

Eukaryotic Chromosomes

Eukaryotic chromosomes –

- -linear chromosomes
- -every species different number of chromosomes
- -chromatin complex of DNA & proteins
 - -heterochromatin not expressed
 - -euchromatin expressed regions

Eukaryotic Chromosomes

Chromosomes: very long & must be condensed to fit within nucleus

- -nucleosome DNA wrapped around a core of 8
 histone proteins
- -nucleosomes spaced 200 nucleotides apart along DNA
- -further coiling creates 30-nm fiber or solenoid

3

Eukaryotic Chromosomes

Solenoid further compacted:

- -radial loops held in place by scaffold proteins
- -scaffold of proteins aided by a complex of proteins called **condensin**

karyotype: particular array of chromosomes of an organism

Eukaryotic Chromosomes

Chromosomes replicated before cell division

- Replicated chromsomes connected to each other at their kinetochores
- -cohesin complex of proteins holding replicated chromosomes together
- -sister chromatids: 2 copies of chromosome within replicated chromosome

Eukaryotic Cell Cycle

interphase

Eukaryotic cell cycle has 5 main phases:

- 1. G₁ (gap phase 1)
- 2. S (synthesis)
- 3. G₂ (gap phase 2)
- 4. M (mitosis)
- 5. C (cytokinesis)

Length of complete cell cycle varies greatly among cell types (18-22 hrs for human cells)

Interphase

Interphase composed of:

G₁ (gap phase 1) – time of cell growth
-RNA/protein synthesis
S phase – synthesis of DNA (DNA replication)
- 2 sister chromatids produced

G₂ (gap phase 2) – chromosomes condense -protein synthesis for mitosis

11

Interphase

Following S phase, sister chromatids appear to share centromere

Centromere replicated but 2 centromeres held together by cohesin proteins

Proteins of kinetochore attached to centromere Microtubules attach to kinetochore.

Interphase

During G₂ chromosomes undergo **condensation**, becoming tightly coiled.

Centrioles (microtubule-organizing centers) replicate & one centriole moves to each pole.

Mitosis is divided into 5 phases:

- 1. prophase
- 2. prometaphase
- 3. metaphase
- 4. anaphase
- 5. telophase

15

Mitosis

Prophase:

- -chromosomes continue to condense
- -centrioles move to each pole of cell
- -spindle apparatus assembled
- -nuclear envelope dissolves
- -longest of 4 mitotic phases

Prometaphase:

- -chromosomes become attached to spindle apparatus by their kinetochores
- a second set of microtubules formed from poles to each kinetochore
- -microtubules begin to pull each chromosome toward center of cell

Metaphase:

- -microtubules pull chromosomes to align them at the center of cell
- -metaphase plate: imaginary plane through the center of cell where chromosomes align

Anaphase:

- -removal of cohesin proteins causes centromeres to separate
- -microtubules pull sister chromatids toward poles
- -in anaphase A kinetochores pulled apart
- -in anaphase B the poles move apart

23

Telophase:

- -spindle apparatus disassembles
- -nuclear envelope forms around each set of sister chromatids
- -chromosomes begin to uncoil
- -nucleolus reappears in each new nucleus

25

Cytokinesis

(cytoplasmic division)

Cytokinesis – cleavage of cell into equal halves

-animal cells – constriction of actin filaments produces a cleavage furrow

27

Control of Cell Cycle

Cell cycle controlled at 3 checkpoints:

- 1. G₁/S checkpoint
 - -cell "decides" to divide
- 2. G₂/M checkpoint
 - -cell makes commitment to mitosis
- 3. late metaphase (spindle) checkpoint
 - -cell ensures all chromosomes attached to spindle

- cyclins proteins produced in synchrony with cell cycle
- -regulate passage of cell through cell cycle checkpoints
- cyclin-dependent kinases (Cdks) enzymes drive cell cycle
- -activated only when bound by a cyclin

At G₁/S checkpoint:

- -G₁ cyclins accumulate
- -G₁ cyclins bind with Cdc2: create active G₁/S Cdk

-G₁/S Cdk phosphorylates # of molecules that ultimately increase enzymes required for DNA replication

Gy/M checkpoint*

Spindle checkpoint

31

Control of Cell Cycle

At spindle checkpoint:

- -signal for anaphase to proceed transmitted through anaphase-promoting complex (APC)
- -APC activates proteins removing **cohesin** holding sister chromatids together

Growth factors:

- -can influence cell cycle
- -trigger intracellular signaling systems
- can override cellular controls that otherwise inhibited cell division

platelet-derived growth factor (PDGF) triggers cells to divide during wound healing

33

Control of Cell Cycle

Cancer: failure of cell cycle control

2 kinds of genes when mutated disturb cell cycle:

- 1. tumor-suppressor genes
- 2. proto-oncogenes

Mutations:

UV/X ray radiation

Chemical

Bacterial/Virus/Fungal

EMF (electromagnetic fields)

Stress

Air pollution

Tumor-suppressor genes:

- -prevent development of cells with mutations
- -p53 halts cell division if damaged DNA detected
- -p53 absent or damaged in many cancerous cells

Control of Cell Cycle

Proto-oncogenes:

- -some encode receptors for growth factors
- -some encode signal transduction proteins
- proto-oncogenes <u>mutations</u> oncogenes
- -oncogenes:→cancer when introduced into cells

36

