SMSG Postulates

- 1. (Two Points Determine a Line) Given any two different points, there is exactly one line that contains them both.
- 2. (Distance Postulate) To every pair of different points, there corresponds a unique positive number.

For points, A and B, this unique positive number is denoted by d(A, B), and is referred to as the distance between A and B.

- 3. (Ruler Postulate) The points of a line can be put into one-to-one correspondence with the real numbers in such a way that
 - (i) to every point, there corresponds exactly one real number called the point's *coordinate*
 - (ii) to every real number, there corresponds exactly one point of the line, and

- 4. (Ruler Placement Postulate) Given two points P and Q of a line, the coordinate system (i.e. the one-to-one correspondence) can be chosen in such a way that the coordinate of P is zero and the coordinate of Q is positive.
- 5-8. Postulates 5 through 8 deal with geometry of three dimensions, and we ignore them here.
 - 9. (Plane Separation) Given a line ℓ and a plane containing it, the points of the plane α that do not lie on the line form two nonempty sets such that

(i) each of the sets is convex, and

- (ii) if point P is in one set and point Q is in the other, then $\overline{PQ} \cap \ell \neq \emptyset$.
- 10. (Space Separation) We ignore this postulate for now (since it deals with three dimensions).
- 11. (Angle Measurement) To every angle $\angle ABC$, there corresponds a unique real number between 0 and 180, which we denote by $m \angle ABC$.
- 12. (Angle Construction) Let \overrightarrow{AB} be a ray on the edge of half-plane H. For every number r between 0 and 180, there is exactly one ray \overrightarrow{AP} , with P in H such that $m \angle PAB = r$.
- 13. (Angle Addition) If D is a point in the interior of $\angle ABC$ and not on \overrightarrow{BA} or \overrightarrow{BC} , then $m \angle ABD + m \angle DBC = m \angle ABC$.
- 14. (Supplement) If two angles form a linear pair, then they are supplementary.
- 15. (SAS Congruence for Triangles) Suppose we are given a correspondence of vertices and sides between two triangles (or between a triangle and itself). If two sides and the included angle of the first triangle are congruent to the corresponding parts of the second triangle, then the correspondence is a congruence of triangles.

Postulates (axioms) 1 through 15 above are the axioms for *neutral* (or *absolute*)geometry.

⁽iii) the distance between two points is the absolute value of the difference of the corresponding coordinates.

- 16. (Parallel Postulate) Given a line l and a point P not on l, there is at most one line through P that is parallel to l. (Assuming this postulate makes our geometry Euclidean.)
- 17. (Area) To every polygonal region, there corresponds a unique positive number called the *area* of the region.
- 18. (Congruence versus Area) If two triangles are congruent, then the triangular regions have the same area.
- 19. (Additivity of Area) Suppose that the region R is the union of two regions R_1 and R_2 . Suppose also that R_1 and R_2 intersect at most in a finite number of segments and points. Then the area of R is the sum of the areas of R_1 and R_2 .
- 20. (Area of Rectangle) The area of a rectangle is equal to the product of the length of its base and the length of its altitude.
- 21. (Volume) Ignore this.
- 22. (Cavalieri's Principle) Ignore this.

SMSG Definitions

- 1. For distinct points A, B, and C, we say C lies between A and B, denoted A C B, if A, B, C are distinct and d(A, B) = d(A, C) + d(C, B).
- 2. For two distinct points A, B a line segment \overline{AB} consists of the points A, B and of all points C on the unique line passing through A and B such that A C B. The points A and B are called the endpoints of \overline{AB} .
- 3. (Notation) For two distinct points A, B, the unique line through A and B is denoted \overleftrightarrow{AB} .
- 4. For two distinct points A, B, the ray \overrightarrow{AB} consists of the points A, B and of all the points C on the line \overleftarrow{AB} such that A C B or A B C.
- 5. A set of points R is called *convex* if for any two distinct points A, B in R, the segment \overline{AB} is contained in R.
- 6. We say that lines ℓ and m are *parallel* if there does not exist a point that is on both ℓ and m.
- 7. Let A, B, C, and D be points. We say that segments \overline{AB} and \overline{CD} are *congruent* if d(A, B) = d(C, D), and we denote this by writing $\overline{AB} \cong \overline{CD}$.
- 8. If l is a line in a plane P, then by SMSG Postulate 9, the complement of l in P is a union of two convex disjoint sets H_1 and H_2 such that for any points $A \in H_1$ and $B \in H_2$, the segment \overline{AB} intersects l at a single point. The sets H_1 and H_2 are called *half-planes* of P determined by l.
- 9. Let A, B, and C be non-collinear points. Then the angle $\angle ABC$ is the union of \overrightarrow{BA} and \overrightarrow{BC} . The rays \overrightarrow{AB} and \overrightarrow{AC} are called the *sides* of $\angle BAC$ and the point A is called the *vertex* of $\angle BAC$.
- 10. Let A, B, C, D, E, and F be points. We say that angles $\angle ABC$ and $\angle DEF$ are *congruent* if $m \angle ABC = m \angle DEF$, and we denote this by writing $\angle ABC \cong \angle DEF$.
- 11. Let A, B, C, D, E, and F be points. We say that triangles $\triangle ABC$ and $\triangle DEF$ are *congruent*, which we denote by $\triangle ABC \cong \triangle DEF$, if the following hold:

 $\angle A \cong \angle D, \quad \angle B \cong \angle E, \quad \angle C \cong \angle F, \quad \overline{AB} \cong \overline{DE}, \quad \overline{BC} \cong \overline{EF}, \quad \text{and} \quad \overline{CA} \cong \overline{FD}.$

- 12. If A, B, C are three distinct non-collinear points, then the *interior of angle* $\angle BAC$ consists of the points on $\overrightarrow{AB} \cup \overrightarrow{AC}$, and of all points D that lie between a point on \overrightarrow{AB} and a point on \overrightarrow{AC} .
- 13. An angle is *obtuse* if it has measure more than 90°. An angle is acute if it has measure less than 90°. An angle is right if it has measure 90°.
- 14. Two angles are *adjacent* if they have a common side and the intersection of their interiors is that common side. (Recall that we, perhaps regrettably, defined the interior to include the rays making up the angle.)

- 15. If two angles are adjacent, and if the union of the non-shared sides is a line, then we say that the angles form a *linear pair*.
- 16. Two angles are *vertical* if they have a common vertex, their intersection is equal to that vertex and if the sides of each angle can be ordered in such a way that the union of the first sides of these angles is a line and the union of the second sides of these angles is a line.
- Two angles are supplementary if the sum of their measures is 180°. Two angles are complementary if the sum of their measures is 90°.
- 18. The *midpoint* of a line segment is a point on the segment that is equidistant from the endpoints of the segment.
- 19. A bisector of an angle $\angle BAC$ is a ray \overrightarrow{AD} that is contained in $\angle BAC$ and such that $m \angle BAD = m \angle DAC = \frac{1}{2}m \angle BAC$.
- 20. Two lines l_1 , l_2 are said to be *perpendicular* if they intersect at a point A such that for any point B on l_1 and any point C on l_2 such that $B \neq A$ and $C \neq A$, the angle $\angle BAC$ is 90°.
- 21. If A, B, C are three non-collinear points, then a *triangle* $\triangle ABC$ is the union of the segments $\overline{AB}, \overline{BC}, \text{ and } \overline{CA}.$
- 22. If A, B, C are three non-collinear points, then we define the *interior* of $\triangle ABC$ to be the intersection of the interiors of the angles $\angle BAC$, $\angle ACB$, and $\angle CBA$.
- 23. Let A, B, C, and D be distinct points, and assume that no two of the segments $\overline{AB}, \overline{BC}, \overline{CD}$, and \overline{DA} intersect at any point other than A, B, C, or D. Then the quadrilateral ABCD is defined to be $\overline{AB} \cup \overline{BC} \cup \overline{CD} \cup \overline{DA}$.