Some notes from class

2018 - 03 - 23

Least upper bound

Least upper bound

Let S be a subset of \mathbb{R} . A number $b \in \mathbb{R}$ is called a least upper bound for S if

- $s \leq b$ for all $s \in S$ (i.e. b is an upper bound for S),
- 2) if c < b, then c is not an upper bound for S.

2018-03-23

2/6

The "usual set-up"

Let R and S be points with $R \neq S$, and suppose that P is a point not on \overrightarrow{RS} with $\overrightarrow{PR} \perp \overrightarrow{RS}$. We will typically be interested in rays of the form \overrightarrow{PQ} , where Q is a point on the same side of \overrightarrow{PR} as S.

Angle of parallelism

Let

$$D = \{ m(\angle RPQ) \mid \overrightarrow{PQ} \text{ intersects } \overrightarrow{RS} \}$$

(Note D is bounded above, so it has a LUB.) Let d_0 be the least upper bound for D in \mathbb{R} .

What is d_0 really?

Theorem

Assume the usual about S, R, P, Q, and d_0 . Then (i) $d_0 \notin D$, and (ii) if $m(\angle RPQ) < d_0$, then \overrightarrow{PQ} intersects \overrightarrow{RS} .

Def

Assume S, R, P, Q and d_0 as usual. If $m(\angle RPQ) = d_0$, we say that $\angle RPQ$ is the angle of parallelism for P and \overrightarrow{RS} .

Theorem

Let T, R, and S be collinear wit T - R - S. Assume that (i) $\angle RPQ$ is the angle of parallelism for P and \overrightarrow{RS} , (ii) $\angle RPQ'$ is the angle of parallelism for P and \overrightarrow{RT} . Then $\angle RPQ \cong \angle RPQ'$.