Some notes from class

2018-03-16

In the middle of proving AAA

Assuming $\triangle ABC$ and $\triangle DEF$ with $\angle A \cong \angle D$, etc...

The three medians of a triangle are concurrent.

Theorem (B)

The three angle bisectors of a triangle are concurrent.

Theorem (C)

The three perpendicular bisectors of a triangle are concurrent.

Theorem (D)

The three altitudes of a triangle are concurrent.

2018-03-16

3 / 8

The three medians of a triangle are concurrent.

DONE! (Proved this earlier.)

The three angle bisectors of a triangle are concurrent.

Proof. Basically, angle bisectors are equidistant from sides. Work two sides at a time.

Label the vertices of the triangle A, B, and C. Let ray q be the angle bisector of $\angle A$, and let r be the angle bisector of $\angle B$. By the Crossbar Theorem, q intersects side \overline{BC} , and also r intersects ray q at some point D. Let $P \in \overline{AB}$, $Q \in \overline{BC}$, and $R \in \overline{CA}$ such that $\overline{DP} \perp \overline{AB}$, $\overline{DQ} \perp \overline{BC}$, and $\overline{DR} \perp \overline{CA}$.

Since D is on q, it follows (from a lemma) that DP = DR. Since D is on r, it follows that DP = DQ. Therefore DQ = DR, and D is consequently equidistant from \overline{BC} and \overline{CA} . This forces D (by our lemma) to be on the angle bisector of $\angle C$.

A D > <
A D >
A

The three perpendicular bisectors of a triangle are concurrent.

Proof. Basically, perpendicular bisectors of segments are equidistant from the endpoints. Plan: Consider one segment (two endpoints) at a time.

The three perpendicular bisectors of a triangle are concurrent.

Proof. Basically, perpendicular bisectors of segments are equidistant from the endpoints. Plan: Consider one segment (two endpoints) at a time.

The three perpendicular bisectors of a triangle are concurrent.

Proof. Basically, perpendicular bisectors of segments are equidistant from the endpoints. Plan: Consider one segment (two endpoints) at a time.

The three perpendicular bisectors of a triangle are concurrent.

Proof. Basically, perpendicular bisectors of segments are equidistant from the endpoints. Plan: Consider one segment (two endpoints) at a time.

Notes

The three altitudes of a triangle are concurrent.

The three altitudes of a triangle are concurrent.

Proof. Let ℓ be the line on A parallel to \overleftarrow{CB} , let m be the line on B parallel to \overrightarrow{AC} , and let n be the line on C parallel to \overrightarrow{AB} . Let D be the intersection of ℓ and n, let E be the intersection of m and n, and let F be the intersection of ℓ and m. Note that, by construction, \overleftrightarrow{AD} is parallel to \overleftrightarrow{BC} and \overleftrightarrow{DC} is parallel to \overleftrightarrow{AB} . Thus $\Box ABCD$ is a parallelogram and AB = CD (from basic facts about parallelograms). Similar reasoning shows $\Box ABEC$ is a parallelogram and CE = AB. Thus C is the midpoint of side \overline{DE} of $\triangle DEF$. Similar reasoning shows B is the midpoint of side \overline{EF} and A is the midpoint of side \overline{DF} .