Some notes from class

2018-03-14

Similarity (Sec 4.4)

Definition

Two polygons $P_1P_2 \dots P_n$ and $Q_1Q_2 \dots Q_n$ are said to be *similar* under the correspondence $P_i \leftrightarrow Q_i$ if:

•
$$\angle P_i \cong \angle Q_i$$
 for all $i \in \{1, 2, \dots, n\}$
• $\frac{P_1 P_2}{Q_1 Q_2} = \frac{P_2 P_3}{Q_2 Q_3} = \dots = \frac{P_{n-1} P_n}{Q_{n-1} Q_n}.$

First step toward triangle similarity condition(s)

Theorem (Basic Proportionality Theorem)

Given $\triangle ABC$, let $D \in \overline{AC}$, and let $E \in \overline{BC}$ with \overrightarrow{DE} parallel to \overrightarrow{AB} . Then $\frac{CD}{DA} = \frac{CE}{EB}$.

Corollary

In the above situation, $\frac{CD}{CA} = \frac{CE}{CB}$. (i.e. We claim that $\frac{w}{x} = \frac{y}{z}$ below.)

Idea. Previous theorem implies $\frac{w}{x-w} = \frac{y}{z-y}$. Thus $\frac{x-w}{w} = \frac{z-y}{y}$.

Other direction

Theorem (This is basically the converse of BPT)

In the given triangle, if $\frac{CD}{DA} = \frac{CE}{EB}$, then \overleftarrow{DE} is parallel to \overleftarrow{AB} .

- **•** AAA similarity
- **2** SAS similarity
- SSS similarity

æ

2018-03-14

5/5