Some notes from class

2018-02-28

Notes 2018-02-28 1 / 5

Parallel lines and distance

Theorem (Euclidean geometry)

If a transversal intersects three parallel lines in such a way as to make congruent segments between the parallel lines, then every transversal intersecting these parallel lines will do the same.

Notes 2018-02-28 2 / 5

Median concurrence theorem

Theorem (Euclidean geometry)

Let \overrightarrow{AM} be a median of $\triangle ABC$ with $M \in \overline{BC}$. If \overrightarrow{CN} is a median, with $n \in \overline{AB}$, then \overrightarrow{CN} intersects \overline{AM} at a point $\frac{2}{3}$ of the way from A to M.

Notes 2018-02-28 3 / 5

Area of parallelogram

Theorem (Euclidean geometry)

Suppose $\lozenge ABCD$ is a parallelogram, and let E and F be points on line \overrightarrow{CD} with EF = CD. Then the area of $\lozenge ABDC$ is equal to the area of $\lozenge ABFE$.

Notes 2018-02-28 4 / 5

Area of parallelogram

Theorem (Euclidean geometry)

Suppose $\lozenge ABCD$ is a parallelogram, and let E and F be points on line $\stackrel{\longleftarrow}{CD}$ with EF=CD. Then the area of $\lozenge ABDC$ is equal to the area of $\lozenge ABFE$.

Notes 2018-02-28 4 / 5

Area of parallelogram

Theorem (Euclidean geometry)

Suppose $\lozenge ABCD$ is a parallelogram, and let E and F be points on line $\stackrel{\longleftarrow}{CD}$ with EF=CD. Then the area of $\lozenge ABDC$ is equal to the area of $\lozenge ABFE$.

Notes 2018-02-28 5 / 5