Some notes from class

2018-02-23

Notes 2018-02-23 1 / 8

Working toward the Saccheri-Legendre Theorem

Definition

A quadrilateral is a rectangle if every interior angle measure is 90° .

Definition

A quadrilateral is a *Saccheri quadrilateral* if there exist two congruent opposite sides (called legs), and one of the remaining sides (called the base) is perpendicular to both legs.

Definition

A quadrilateral is a Lambert quadrilateral if it contains three 90° angles.

Working toward the Saccheri-Legendre Theorem

Definition

A quadrilateral is a rectangle if every interior angle measure is 90°.

Definition

A quadrilateral is a *Saccheri quadrilateral* if there exist two congruent opposite sides (called legs), and one of the remaining sides (called the base) is perpendicular to both legs.

Definition

A quadrilateral is a Lambert quadrilateral if it contains three 90° angles.

Theorem

If $\Diamond ABCD$ is a Saccheri quadrilateral with base \overline{AB} , then $\triangle ABC \cong \triangle BAD$ and $\triangle DCB \cong \triangle CDA$. In particular, the diagonals are congruent.

Results from last time

Theorem

In a Saccheri quadrilateral, the length of the summit is greater than or equal to the length of the base.

Theorem

In a Saccheri quadrilateral, the line joining the midpoint of the base to the midpoint of the summit is perpendicular to both. Also, the summit is parallel to the base.

Theorem

In a Lambert quadrilateral, the length of a side between two right angles is less than or equal to the length of the opposite side.

Notes 2018-02-23 3 / 8

Question: Assume geometry is currently neutral

Suppose this rectangle exists. Can you make one that is 5×7 ?

90°	3	90°
2		
90°		90°

Summary of previous slide

To save time, we assume the following (without writing proofs).

Theorem

If a rectangle exists, then there is a rectangle whose sides are arbitrarily large. (i.e. They are at least as long as some given lengths.)

Theorem

If a rectangle exists, then for any given length and width, there is a rectangle having exactly those dimensions.

Notes 2018-02-23 5 /

New result(s)

Theorem

If a rectangle exists, then every triangle has an angle sum of 180° . We prove a slightly easier result: If a rectangle exists, then every right triangle has an angle sum of 180.

New result(s)

Theorem

If a rectangle exists, then every triangle has an angle sum of 180°. We prove a slightly easier result: If a rectangle exists, then every right triangle has an angle sum of 180.

Theorem (Converse of previous theorem)

If every (right) triangle has an angle sum of 180°, then a rectangle exists.

Key connection between triangles and parallel lines

Theorem

The Euclidean parallel postulate (Playfair's postulate) is equivalent to the statement that the angle sum of every triangle is 180°.

 \implies Assume Playfair's postulate holds, and prove that every triangle has an angle sum of 180°.

 \Leftarrow Assume every triangle has an angle sum of 180°, and prove that given any line ℓ and a point P not on ℓ , there is ...

Notes 2018-02-23 7 / 8

The tricky direction

 \Leftarrow Assume every triangle has an angle sum of 180°, and prove that given any line ℓ and a point P not on ℓ , there is at most one parallel line on P.