Some notes from class

2018-02-14

Notes 2018-02-14 1 / 5

Euclid's 5th Postulate

Euclid's 5th Postulate

Suppose that two lines are intersected by a transversal in such a way that the sum of the measures of two interior angles on the same side of the transversal is less than 180°. Then the two lines intersect on that side of the transversal.

Playfair's Postulate

If ℓ is a line and P is a point not on ℓ , then there is at most one line on P that is parallel to ℓ .

Notes 2018-02-14 2 / 5

Alternate Interior Angle Theorem

Theorem (Alternate Interior Angle Theorem)

If two lines are intersected by a transversal forming a pair of congruent alternate interior angles, then the lines are parallel.

Theorem (Alternate Interior Angle Theorem)

Suppose that two lines are intersected by a transversal. If a pair of alternate interior angles are congruent, then the lines are parallel.

Theorem (Converse of Alternate Interior Angle Theorem)

Suppose that two lines are intersected by a transversal. If the lines are parallel, then a pair of alternate interior angles are congruent.

(ロ) (目) (目) (目) (目) (ロ)

Notes 2018-02-14 3 / 5

Playfair ← Converse of AIAT

Theorem (Playfair \implies Converse of AIAT)

Suppose Playfair's Postulate holds, and assume that two lines are intersected by a transversal. If the lines are parallel, then a pair (in fact, all pairs) of alternate interior angles are congruent.

Proof. Let ℓ and m be parallel lines, and let t be a transversal. We must show that t forms a pair of congruent alternate interior angles. Assume t intersects ℓ at point P and m at point Q. Let R be a point on m with $R \neq Q$, and let $S \neq P$ be a point on ℓ in the opposite half-plane (as determined by t) from R. We will show that $\angle RQP \cong \angle SPQ$.

By the angle construction postulate, there is a point T in the half-plane containing S (formed from t) such that $m(\angle QPT) = m(\angle RQP)$. Then the AIAT implies that \overrightarrow{PT} is parallel to \overrightarrow{QR} . But since ℓ (same as \overrightarrow{PS}) is a line on P parallel to m, Playfair's Postulate implies that $\overrightarrow{PT} = \ell$.

Notes 2018-02-14 4 / 5

Ways to recognize Euclidean geometry

- Playfair's Axiom holds. (This is our official assumption.)
- 2 Euclid's 5th postulate holds.
- **③** The converse of the AIAT holds.

Notes 2018-02-14 5 / 5

Ways to recognize Euclidean geometry

- Playfair's Axiom holds. (This is our official assumption.)
- 2 Euclid's 5th postulate holds.
- **3** The converse of the AIAT holds.
- If a line intersects one of two parallel lines, then it intersects the other.
- If a line is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Notes 2018-02-14 5 / 5