Some notes from class

2018-02-07

Notes 2018-02-07 1

Theorems we know

Theorem

Suppose a line ℓ intersects $\triangle PQR$ at a point S such that P-S-Q. Then ℓ intersects \overline{PR} or \overline{RQ} .

Theorem (Crossbar Theorem)

If X is a point in the interior of $\triangle ABC$, then \overrightarrow{AX} intersects \overline{BC} in a point Y such that B-Y-C.

Theorem (Isosceles Triangle Theorem)

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Theorem (Perpendicular Bisector Theorem)

A point is on the perpendicular bisector of a line segment if and only if it is equidistant from the endpoints of the line segment.

2018-02-07 2 / 7

More theorems

Theorem (Exterior Angle Theorem)

The measure of an exterior angle of a triangle is greater than or equal to the measure of each non-adjacent interior angle of the triangle.

Theorem (ASA)

Blah, blah, blah...

Theorem (AAA)

Blah, blah, blah...

Notes

AAS

Theorem (AAS)

If the angles of two triangles are in one-to-one correspondence in such a way that two angles and a non-included side of one triangle are congruent to two angles and a non-included side of the other triangle, then the two triangles are congruent.

Notes 2018-02-07

Bigger side implies bigger opposite angle

Theorem

Suppose A, B, and C are non-collinear (meaning that $\triangle ABC$ is defined). If BA > BC, then $m(\angle C) > m(\angle A)$.

Notes 2018-02-07 5 /

Bigger opposite angle implies bigger side

Theorem

Suppose A, B, and C are non-collinear (meaning that $\triangle ABC$ is defined). If $m(\angle C) > m(\angle A)$, then BA > BC.

Notes 2018-02-07

Triangle Inequality

Theorem (Triangle Inequality)

Let A, B, and C be non-collinear points. Then AB + BC > AC.

Notes 2018-02-07 7 / 7