Some notes from class

2018-02-02

Pasch's Theorem (Moritz Pasch, 1882)

Theorem

Suppose a line ℓ intersects $\triangle PQR$ at a point S such that P - S - Q. Then ℓ intersects \overline{PR} or \overline{RQ} .

Proof.

Pasch's Theorem (Moritz Pasch, 1882)

Theorem

Suppose a line ℓ intersects $\triangle PQR$ at a point S such that P - S - Q. Then ℓ intersects \overline{PR} or \overline{RQ} .

Proof. Let H_1 and H_2 be the half-planes determined by ℓ . Since \overline{PQ} intersects ℓ (at point S), the Plane Separation Axiom implies that P and Q are in opposite half-planes, and it is no loss to write $P \in H_1$ and $Q \in H_2$.

Note that either $R \in \ell$, $R \in H_1$, or $R \in H_2$. If $R \in \ell$, then ℓ intersects both \overline{PR} and \overline{RQ} , so we are done. If $R \in H_1$, then the Plane Separation Axiom implies that \overline{QR} intersects ℓ since $Q \in H_2$. Similarly, if $R \in H_2$, then \overline{PR} intersects ℓ that the base angles of an isosceles triangle are congruent.

Start of argument. Let $\triangle ABC$ be a triangle with side \overline{AB} congruent to side \overline{AC} . Draw the angle bisector of $\angle A$ and let D be the point at which it meets side \overline{BC} ...

... that the base angles of an isosceles triangle are congruent.

Start of argument. Let $\triangle ABC$ be a triangle with side \overline{AB} congruent to side \overline{AC} . Draw the angle bisector of $\angle A$ and let D be the point at which it meets side \overline{BC} ...

Theorem (Crossbar Theorem)

If X is a point in the interior of $\triangle ABC$, then \overrightarrow{AX} intersects \overrightarrow{BC} in a point Y such that B - Y - C.

Definition

If $\triangle ABC$ is a triangle, we define the *interior* of $\triangle ABC$ to be the collection of all points not on \overline{AB} or \overline{BC} or \overline{CA} that belong to the intersection of the interiors of angles $\angle A$, $\angle B$, and $\angle C$.

Theorem (Crossbar Theorem)

If X is a point in the interior of $\triangle ABC$, then \overrightarrow{AX} intersects \overrightarrow{BC} in a point Y such that B - Y - C.

Proof. Since X is in the interior of $\triangle ABC$, there exist points $W \in \overrightarrow{AC}$ and $Z \in \overrightarrow{AB}$ with $X \in \overline{WZ}$ (and $X \neq W, Z$). We claim that \overline{WC} does not intersect \overrightarrow{AX} . If \overrightarrow{AX} intersects \overline{WC} , then by Axiom 1, $\overrightarrow{AX} = \overrightarrow{WC}$. This forces X to be on \overrightarrow{AC} , which then implies the contradiction that X = W. Similar reasoning shows that \overline{BZ} does not intersect \overrightarrow{AX} . What now???

Theorem (Isosceles Triangle Theorem)

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Proof. Let $\triangle ABC$ be isosceles, and suppose that AB = AC. Then since AB = AC, $\angle A \cong \angle A$, and AC = AB, ...

Notes

Theorem (Perpendicular Bisector Theorem)

A point is on the perpendicular bisector of a line segment if and only if it is equidistant from the endpoints of the line segment.

Proof. Let A and B be distinct points. We first prove that if a point P is on the perpendicular bisector of \overline{AB} , then PA = PB.

We next show that if a point P satisfies PA = PB, then P is on the perpendicular bisector of \overline{AB} .