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Theorem from Sec 3.2

Theorem

(i) Every segment has a unique midpoint.

Names of points: A and B

Line
←→
AB

Points on
←→
AB correspond to real numbers

A←→ xA ∈ R B ←→ xB ∈ R
Let e = xA+xB

2 ∈ R, and let E ∈
←→
AB with E ←→ e.

d(A,E) = |xA − xA+xB
2 | = |xA−xB |

2 and d(E,B) = · · · = |xB−xA|
2 .

Suppose that C ∈
←→
AB is also a midpoint. Let C ←→ c ∈ R.

d(A,C) = d(C,B) =⇒ |xA−c| = |c−xB| =⇒ xA−c = ±(c−xB)
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Let A and B be distinct points. By , the points on
←→
AB are in

one-to-one correspondence with the real numbers, so we may write xA
and xB for real numbers corresponding to A and B respectively.

Let

e = xA+xB
2 , and note that there must be some point E on

←→
AB

corresponding to e. We verify that E is a midpoint of
←→
AB by showing

that d(A,E) = d(E,B). Notice that d(A,E) = |xA − xA+xB
2 | = |xA−xB |

2

and d(E,B) = |xA+xB
2 − xB| = |xA−xB |

2 , so d(A,E) = d(E,B).

Suppose that C is any midpoint of AB (potentially not equal to E).
By Axiom , let c be the real number corresponding to the point C

on
←→
AB. Then d(A,C) = d(C,B), so |xA − c| = |c− xB|. This forces

xA − c = ±(c− xB). If xA − c = −(c− xB), then xA = xB, which forces
the contradiction A = B. If xA − c = c− xB, then c = xA+xB

2 , so. . .
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A basic theorem

Theorem

If two distinct lines intersect, their intersection is exactly one point.

Proof. Let `1 and `2 be distinct lines, and let P and Q be points of
intersection of `1 and `2. If P 6= Q, then `1 = `2 by Postulate 1 (that
two points determine a line). Thus it must be that P = Q, and it
follows there is at most one point of intersection.

Notes 2018-01-31 4 / 8



A basic theorem

Theorem

If two distinct lines intersect, their intersection is exactly one point.

Proof. Let `1 and `2 be distinct lines, and let P and Q be points of
intersection of `1 and `2. If P 6= Q, then `1 = `2 by Postulate 1 (that
two points determine a line). Thus it must be that P = Q, and it
follows there is at most one point of intersection.

Notes 2018-01-31 4 / 8



A basic theorem

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical
angles. Then by definition, we may write the
angles as ∠ABC and ∠DBE, where we assume

the points A,B,C,D,E satisfy A−B −E and C −B −D. Since C,B,
and D are collinear, the angles ∠CBA and ∠ABD

form a linear pair.
By the supplement postulate, they are supplementary, so
m∠CBA + m∠ABD = 180. Similar reasoning applied to ∠EBD and
∠DBA implies that m∠EBD + m∠DBA = 180. Thus
m∠CBA = 180−m∠ABD = m∠EBD, as desired.
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1882 was a good year

Theorem

Suppose a line ` intersects 4PQR at a point S such that P − S −Q.
Then ` intersects PR or RQ.

Proof.
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Soon we will prove. . .

. . . that the base angles of an isosceles triangle are congruent.
Start of argument. Let 4ABC be a triangle with side AB
congruent to side AC. Draw the angle bisector of ∠A and let D be the
point at which it meets side BC . . .

Theorem (Crossbar Theorem)

If X is a point in the interior of 4ABC, then
−−→
AX intersects BC in a

point Y such that B − Y − C.

Definition

If 4ABC is a triangle, we define the interior of 4ABC to be the
collection of all points not on AB or BC or CA that belong to the
intersection of the interiors of angles ∠A, ∠B, and ∠C.

Notes 2018-01-31 7 / 8



Soon we will prove. . .

. . . that the base angles of an isosceles triangle are congruent.
Start of argument. Let 4ABC be a triangle with side AB
congruent to side AC. Draw the angle bisector of ∠A and let D be the
point at which it meets side BC . . .

Theorem (Crossbar Theorem)

If X is a point in the interior of 4ABC, then
−−→
AX intersects BC in a

point Y such that B − Y − C.

Definition

If 4ABC is a triangle, we define the interior of 4ABC to be the
collection of all points not on AB or BC or CA that belong to the
intersection of the interiors of angles ∠A, ∠B, and ∠C.

Notes 2018-01-31 7 / 8



Crossbar Theorem

Theorem (Crossbar Theorem)

If X is a point in the interior of 4ABC, then
−−→
AX intersects BC in a

point Y such that B − Y − C.

Proof.

Notes 2018-01-31 8 / 8


