Some notes from class

2018-01-31

Theorem

- (i) Every segment has a unique midpoint.
 - \bullet Names of points: A and B
 - Line \overrightarrow{AB}
 - Points on \overrightarrow{AB} correspond to real numbers
 - $A \longleftrightarrow x_A \in \mathbb{R}$ $B \longleftrightarrow x_B \in \mathbb{R}$
 - Let $e = \frac{x_A + x_B}{2} \in \mathbb{R}$, and let $E \in \overleftrightarrow{AB}$ with $E \longleftrightarrow e$.
 - $d(A, E) = |x_A \frac{x_A + x_B}{2}| = \frac{|x_A x_B|}{2}$ and $d(E, B) = \dots = \frac{|x_B x_A|}{2}$.
 - Suppose that $C \in \overrightarrow{AB}$ is also a midpoint. Let $C \longleftrightarrow c \in \mathbb{R}$.
 - $d(A,C) = d(C,B) \implies |x_A c| = |c x_B| \implies x_A c = \pm (c x_B)$

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By _____, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively.

3 / 8

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By _____, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overrightarrow{AB} corresponding to e.

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By _____, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overrightarrow{AB} corresponding to E. We verify that E is a midpoint of E by showing that E is a midpoint of E by showing that E is a midpoint of E.

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By _____, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overrightarrow{AB} corresponding to e. We verify that E is a midpoint of \overrightarrow{AB} by showing that d(A, E) = d(E, B). Notice that $d(A, E) = |x_A - \frac{x_A + x_B}{2}| = \frac{|x_A - x_B|}{2}$ and $d(E, B) = |\frac{x_A + x_B}{2} - x_B| = \frac{|x_A - x_B|}{2}$, so d(A, E) = d(E, B).

◆ロト ◆問 ト ◆ 恵 ト ・ 恵 ・ 夕 Q ○・

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By _____, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overrightarrow{AB} corresponding to e. We verify that E is a midpoint of \overrightarrow{AB} by showing that d(A, E) = d(E, B). Notice that $d(A, E) = |x_A - \frac{x_A + x_B}{2}| = \frac{|x_A - x_B|}{2}$ and $d(E, B) = |\frac{x_A + x_B}{2} - x_B| = \frac{|x_A - x_B|}{2}$, so d(A, E) = d(E, B).

Suppose that C is any midpoint of \overline{AB} (potentially not equal to E).

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By _____, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overrightarrow{AB} corresponding to e. We verify that E is a midpoint of \overrightarrow{AB} by showing that d(A, E) = d(E, B). Notice that $d(A, E) = |x_A - \frac{x_A + x_B}{2}| = \frac{|x_A - x_B|}{2}$ and $d(E, B) = |\frac{x_A + x_B}{2} - x_B| = \frac{|x_A - x_B|}{2}$, so d(A, E) = d(E, B).

Suppose that C is any midpoint of \overline{AB} (potentially not equal to E). By Axiom _____, let c be the real number corresponding to the point C on \overline{AB} .

◆ロト ◆団ト ◆草ト ◆草ト 草 めらぐ

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By _____, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overrightarrow{AB} corresponding to e. We verify that E is a midpoint of \overrightarrow{AB} by showing that d(A, E) = d(E, B). Notice that $d(A, E) = |x_A - \frac{x_A + x_B}{2}| = \frac{|x_A - x_B|}{2}$ and $d(E, B) = |\frac{x_A + x_B}{2} - x_B| = \frac{|x_A - x_B|}{2}$, so d(A, E) = d(E, B).

Suppose that C is any midpoint of \overline{AB} (potentially not equal to E). By Axiom _____, let c be the real number corresponding to the point C on \overline{AB} . Then d(A,C)=d(C,B), so $|x_A-c|=|c-x_B|$. This forces $x_A-c=\pm(c-x_B)$. If $x_A-c=-(c-x_B)$, then $x_A=x_B$, which forces the contradiction A=B. If $x_A-c=c-x_B$, then $x_A=x_B$, then $x_A=x_B$, so...

Theorem

If two distinct lines intersect, their intersection is exactly one point.

Theorem

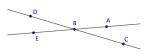
If two distinct lines intersect, their intersection is exactly one point.

Proof. Let ℓ_1 and ℓ_2 be distinct lines, and let P and Q be points of intersection of ℓ_1 and ℓ_2 . If $P \neq Q$, then $\ell_1 = \ell_2$ by Postulate 1 (that two points determine a line). Thus it must be that P = Q, and it follows there is at most one point of intersection.

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $\angle ABC$ and $\angle DBE$, where we assume

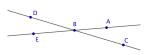


the points A, B, C, D, E satisfy A - B - E and C - B - D. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $\angle ABC$ and $\angle DBE$, where we assume

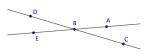


the points A, B, C, D, E satisfy A - B - E and C - B - D. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$ form a linear pair. By the supplement postulate,

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $\angle ABC$ and $\angle DBE$, where we assume

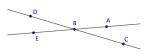


the points A, B, C, D, E satisfy A - B - E and C - B - D. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$ form a linear pair. By the supplement postulate, they are supplementary, so $m\angle CBA + m\angle ABD = 180$.

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $\angle ABC$ and $\angle DBE$, where we assume

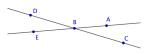


the points A, B, C, D, E satisfy A - B - E and C - B - D. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$ form a linear pair. By the supplement postulate, they are supplementary, so $m\angle CBA + m\angle ABD = 180$. Similar reasoning applied to $\angle EBD$ and $\angle DBA$ implies that $m\angle EBD + m\angle DBA = 180$.

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $\angle ABC$ and $\angle DBE$, where we assume



the points A, B, C, D, E satisfy A - B - E and C - B - D. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$ form a linear pair. By the supplement postulate, they are supplementary, so $m\angle CBA + m\angle ABD = 180$. Similar reasoning applied to $\angle EBD$ and $\angle DBA$ implies that $m\angle EBD + m\angle DBA = 180$. Thus $m\angle CBA = 180 - m\angle ABD = m\angle EBD$, as desired.

<ロ > ← □

1882 was a good year

Theorem

Suppose a line ℓ intersects $\triangle PQR$ at a point S such that P-S-Q. Then ℓ intersects \overline{PR} or \overline{RQ} .

Proof.

Soon we will prove...

...that the base angles of an isosceles triangle are congruent. **Start of argument.** Let $\triangle ABC$ be a triangle with side \overline{AB} congruent to side \overline{AC} . Draw the angle bisector of $\angle A$ and let D be the point at which it meets side \overline{BC} ...

Soon we will prove...

...that the base angles of an isosceles triangle are congruent. **Start of argument.** Let $\triangle ABC$ be a triangle with side \overline{AB} congruent to side \overline{AC} . Draw the angle bisector of $\angle A$ and let D be the point at which it meets side \overline{BC} ...

Theorem (Crossbar Theorem)

If X is a point in the interior of $\triangle ABC$, then \overrightarrow{AX} intersects \overline{BC} in a point Y such that B-Y-C.

Definition

If $\triangle ABC$ is a triangle, we define the *interior* of $\triangle ABC$ to be the collection of all points not on \overline{AB} or \overline{BC} or \overline{CA} that belong to the intersection of the interiors of angles $\angle A$, $\angle B$, and $\angle C$.

Crossbar Theorem

Theorem (Crossbar Theorem)

If X is a point in the interior of $\triangle ABC$, then \overrightarrow{AX} intersects \overline{BC} in a point Y such that B-Y-C.

Proof.