Some notes from class

2018-01-31

 299

 \leftarrow \Box

Theorem

(i) Every segment has a unique midpoint.

- Names of points: A and B
- Line \overleftrightarrow{AB}

Points on \overleftrightarrow{AB} correspond to real numbers

- $\bullet \ A \longleftrightarrow x_A \in \mathbb{R} \qquad B \longleftrightarrow x_B \in \mathbb{R}$ Let $e = \frac{x_A + x_B}{2} \in \mathbb{R}$, and let $E \in \overleftrightarrow{AB}$ with $E \longleftrightarrow e$. $d(A, E) = |x_A - \frac{x_A + x_B}{2}| = \frac{|x_A - x_B|}{2}$ $\frac{-x_B}{2}$ and $d(E, B) = \cdots = \frac{|x_B - x_A|}{2}$ $\frac{-x_{A}}{2}$.
- Suppose that $C \in \overleftrightarrow{AB}$ is also a midpoint. Let $C \longleftrightarrow c \in \mathbb{R}$.

$$
\bullet \, d(A, C) = d(C, B) \implies |x_A - c| = |c - x_B| \implies x_A - c = \pm (c - x_B)
$$

つひへ

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By $___\$, the points on \overleftrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively.

 290

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By $___\$, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overrightarrow{AB} corresponding to e.

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By $___\$, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overrightarrow{AB} corresponding to e. We verify that E is a midpoint of \overleftrightarrow{AB} by showing that $d(A, E) = d(E, B)$.

つひへ

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By ____, the points on \overleftrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overrightarrow{AB} corresponding to e. We verify that E is a midpoint of \overleftrightarrow{AB} by showing that $d(A, E) = d(E, B)$. Notice that $d(A, E) = |x_A - \frac{x_A + x_B}{2}| = \frac{|x_A - x_B|}{2}$ 2 and $d(E, B) = |\frac{x_A + x_B}{2} - x_B| = \frac{|x_A - x_B|}{2}$ $\frac{-x_{B}}{2}$, so $d(A, E) = d(E, B)$.

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By ____, the points on \overleftrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overleftrightarrow{AB} corresponding to e. We verify that E is a midpoint of \overleftrightarrow{AB} by showing that $d(A, E) = d(E, B)$. Notice that $d(A, E) = |x_A - \frac{x_A + x_B}{2}| = \frac{|x_A - x_B|}{2}$ 2 and $d(E, B) = |\frac{x_A + x_B}{2} - x_B| = \frac{|x_A - x_B|}{2}$ $\frac{-x_{B}}{2}$, so $d(A, E) = d(E, B)$.

Suppose that C is any midpoint of \overline{AB} (potentially not equal to E).

Theorem

$$
(i) Every segment has a unique midpoint.
$$

Let A and B be distinct points. By \Box , the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overleftrightarrow{AB} corresponding to e. We verify that E is a midpoint of \overleftrightarrow{AB} by showing that $d(A, E) = d(E, B)$. Notice that $d(A, E) = |x_A - \frac{x_A + x_B}{2}| = \frac{|x_A - x_B|}{2}$ 2 and $d(E, B) = |\frac{x_A + x_B}{2} - x_B| = \frac{|x_A - x_B|}{2}$ $\frac{-x_{B}}{2}$, so $d(A, E) = d(E, B)$. Suppose that C is any midpoint of \overline{AB} (potentially not equal to E). By Axiom \Box , let c be the real number corresponding to the point C \overrightarrow{AB} .

つひひ

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By ____, the points on \overrightarrow{AB} are in one-to-one correspondence with the real numbers, so we may write x_A and x_B for real numbers corresponding to A and B respectively. Let $e = \frac{x_A + x_B}{2}$, and note that there must be some point E on \overleftrightarrow{AB} corresponding to e. We verify that E is a midpoint of \overleftrightarrow{AB} by showing that $d(A, E) = d(E, B)$. Notice that $d(A, E) = |x_A - \frac{x_A + x_B}{2}| = \frac{|x_A - x_B|}{2}$ 2 and $d(E, B) = |\frac{x_A + x_B}{2} - x_B| = \frac{|x_A - x_B|}{2}$ $\frac{-x_{B}}{2}$, so $d(A, E) = d(E, B)$. Suppose that C is any midpoint of \overline{AB} (potentially not equal to E). By Axiom , let c be the real number corresponding to the point C \overline{AB} . Then $d(A, C) = d(C, B)$, so $|x_A - c| = |c - x_B|$. This forces $x_A - c = \pm (c - x_B)$. If $x_A - c = -(c - x_B)$, then $x_A = x_B$, which forces the contradiction $A = B$. If $x_A - c = c - x_B$, then $c = \frac{x_A + x_B}{2}$, so...

←ロ ▶ → 伊

 299

Theorem

If two distinct lines intersect, their intersection is exactly one point.

 299

 \leftarrow \Box \rightarrow

Theorem

If two distinct lines intersect, their intersection is exactly one point.

Proof. Let ℓ_1 and ℓ_2 be distinct lines, and let P and Q be points of intersection of ℓ_1 and ℓ_2 . If $P \neq Q$, then $\ell_1 = \ell_2$ by Postulate 1 (that two points determine a line). Thus it must be that $P = Q$, and it follows there is at most one point of intersection.

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $∠ABC$ and $∠DBE$, where we assume

the points A, B, C, D, E satisfy $A - B - E$ and $C - B - D$. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $∠ABC$ and $∠DBE$, where we assume

the points A, B, C, D, E satisfy $A - B - E$ and $C - B - D$. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$ form a linear pair. By the supplement postulate,

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $∠ABC$ and $∠DBE$, where we assume

the points A, B, C, D, E satisfy $A - B - E$ and $C - B - D$. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$ form a linear pair. By the supplement postulate, they are supplementary, so $m\angle CBA + m\angle ABD = 180.$

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $∠ABC$ and $∠DBE$, where we assume

the points A, B, C, D, E satisfy $A - B - E$ and $C - B - D$. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$ form a linear pair. By the supplement postulate, they are supplementary, so $m\angle CBA + m\angle ABD = 180$. Similar reasoning applied to $\angle EBD$ and $\angle DBA$ implies that $m\angle EBD + m\angle DBA = 180$.

Theorem

Vertical angles are congruent.

Proof. Suppose we are given a pair of vertical angles. Then by definition, we may write the angles as $∠ABC$ and $∠DBE$, where we assume

the points A, B, C, D, E satisfy $A - B - E$ and $C - B - D$. Since C, B, and D are collinear, the angles $\angle CBA$ and $\angle ABD$ form a linear pair. By the supplement postulate, they are supplementary, so $m\angle CBA + m\angle ABD = 180$. Similar reasoning applied to $\angle EBD$ and $\angle DBA$ implies that $m\angle EBD + m\angle DBA = 180$. Thus $m\angle CBA = 180 - m\angle ABD = m\angle EBD$, as desired.

1882 was a good year

Theorem

Suppose a line ℓ intersects $\triangle PQR$ at a point S such that $P - S - Q$. Then ℓ intersects \overline{PR} or \overline{RQ} .

Proof.

 299

4 0 3

Soon we will prove. . .

. . . that the base angles of an isosceles triangle are congruent. **Start of argument.** Let $\triangle ABC$ be a triangle with side AB congruent to side \overline{AC} . Draw the angle bisector of ∠A and let D be the point at which it meets side \overline{BC} ...

つのへ

. . . that the base angles of an isosceles triangle are congruent. **Start of argument.** Let $\triangle ABC$ be a triangle with side AB congruent to side \overline{AC} . Draw the angle bisector of ∠A and let D be the point at which it meets side \overline{BC} ...

Theorem (Crossbar Theorem)

If X is a point in the interior of $\triangle ABC$, then \overrightarrow{AX} intersects \overrightarrow{BC} in a point Y such that $B - Y - C$.

Definition

If $\triangle ABC$ is a triangle, we define the *interior* of $\triangle ABC$ to be the collection of all points not on \overline{AB} or \overline{BC} or \overline{CA} that belong to the intersection of the interiors of angles $\angle A$, $\angle B$, and $\angle C$.

つひひ

Theorem (Crossbar Theorem)

If X is a point in the interior of $\triangle ABC$, then \overrightarrow{AX} intersects \overrightarrow{BC} in a point Y such that $B - Y - C$.

Proof.

 $2Q$

4 0 8