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Our First Theorem

Theorem

(i) Every segment has a unique midpoint.
(ii) Every angle has a unique bisector.

Proof outline for part (i).

Notation

Show the existence of a midpoint.

Show that the midpoint is unique. (There is only one.)
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Our First Theorem

Theorem

(i) Every segment has a unique midpoint.

Names of points: A and B

Line
←→
AB

Points on
←→
AB correspond to real numbers

A←→ xA ∈ R B ←→ xB ∈ R
Let e = xA+xB

2 ∈ R, and let E ∈
←→
AB with E ←→ e.

d(A,E) = |xA − xA+xB
2 | = |xA−xB |

2 and d(E,B) = · · · = |xB−xA|
2 .

Suppose that C ∈
←→
AB is also a midpoint. Let C ←→ c ∈ R.

d(A,C) = d(C,B) =⇒ |xA−c| = |c−xB| =⇒ xA−c = ±(c−xB)
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Our First Theorem

Theorem

(i) Every segment has a unique midpoint.

Let A and B be distinct points. By Axiom ???, the points on
←→
AB are

in one-to-one correspondence with the real numbers, so we may write
xA and xB for real numbers corresponding to A and B respectively.

Let e = xA+xB
2 , and note that there must be some point E on

←→
AB

corresponding to e. We verify that E is a midpoint of
←→
AB by showing

that d(A,E) = d(E,B). Notice that d(A,E) = |xA − xA+xB
2 | = |xA−xB |

2

and d(E,B) = |xA+xB
2 − xB| = |xA−xB |

2 , so d(A,E) = d(E,B).

Suppose that C is any midpoint of AB (potentially not equal to E).
By Axiom ???, let c be the real number corresponding to the point C

on
←→
AB. Then d(A,C) = d(C,B), so |xA − c| = |c− xB|. This forces

xA − c = ±(c− xB). If xA − c = −(c− xB), then xA = xB, which forces
the contradiction A = B. If xA − c = c− xB, then c = xA+xB

2 , so. . .
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