Some notes from class

2018-01-17

Notes 2018-01-17 1 / 6

Incidence Geometry

<u>Undefined terms</u>: point, line, on

Axioms:

- For each two distinct points, there is a unique line that is on both of them
- For every line, there exist at least two distinct points that are on it.
- **3** There exist at least three distinct points.
- Not all points lie on the same line.

Notes 2018-01-17 2 / 6

A couple definitions

Def. If two distinct lines are on the same point, then they are said to *intersect*.

Def. Two lines that do not intersect are called *parallel* lines.

Question. Do parallel lines always exist in incidence geometry?

3 / 6

Notes 2018-01-17

Theorem 1

Theorem

In incidence geometry, if two lines intersect, then the intersection is a single point.

Proof.

Notes 2018-01-17

Theorem 2

Theorem

In incidence geometry, each point is on at least 2 lines.

Proof. Let P be a point. Then by Axiom 3, there exist distinct points Q and R with $Q, R \neq P$. By Axiom 1, there is a line ℓ on P and Q, and there is a line m on P and R. If $\ell \neq m$, then we are done because there are two lines on P. If $\ell = m$, then P, Q, and R are all on ℓ , so by Axiom 4, there is some point S not on ℓ . Now by Axiom 1, there is a line n on S and P. If $n = \ell$, this would force S to be on ℓ , which is not the case. Thus $n \neq \ell$, and we see that n and ℓ are two lines on P.

Notes 2018-01-17 5 / 6

Parallel possibilities

How do parallel lines behave (in a given type of geometry)?

If ℓ is a line and P is a point not on ℓ , then

 \bullet ... there does not exist a line on P parallel to ℓ .

 \odot ... there exists more than one line on P parallel to ℓ .

Notes 2018-01-17