Integrals related to paths

Formula	Name	Comment(s)
$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$	Curve	
$\int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$	Length of curve	Often write $ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$
$\int_C f(x, y, z) ds $ (Recall formula for ds .)	Line integral of scalar function over C	Weighted length. Can view as area of fence
$\int_C \mathbf{F} \bullet \mathbf{T} ds (= \int_C \mathbf{F} \bullet d\mathbf{r})$	Line integral of vector field over C	Gives $Work = Force \times Distance$

Integrals related to surfaces

$\mathbf{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$	Surface	
$\iint_D \mathbf{r}_u \times \mathbf{r}_v du dv$	Surface area	Can replace $du dv$ with $dv du$ or dA . We often write $dS = \mathbf{r}_u \times \mathbf{r}_v dA$.
$\iint_{S} f(x, y, z) dS$ $\iint_{D} f(\mathbf{r}(u, v)) \mathbf{r}_{u} \times \mathbf{r}_{v} dA$	Surface integral of f over S	
$\iint_{S} \mathbf{F} \bullet \mathbf{n} dS$	Surface integral of vector field \mathbf{F} over surface S	$\mathbf{n} = \text{unit normal vector} = \frac{\mathbf{r}_u \times \mathbf{r}_v}{ \mathbf{r}_u \times \mathbf{r}_v }$. We call this the flux of \mathbf{F} across S . (Useful in fluid flow and in electricity and magnetism.)