

# ECOLOGICAL Society of America

Ecology/Ecological Monographs/Ecological Applications

# PREPRINT

This preprint is a PDF of a manuscript that has been accepted for publication in an ESA journal. It is the final version that was uploaded and approved by the author(s). While the paper has been through the usual rigorous peer review process of ESA journals, it has not been copy-edited, nor have the graphics and tables been modified for final publication. Also note that the paper may refer to online Appendices and/or Supplements that are not yet available. We have posted this preliminary version of the manuscript online in the interest of making the scientific findings available for distribution and citation as quickly as possible following acceptance. However, readers should be aware that the final, published version will look different from this version and may also have some differences in content.

The doi for this manuscript and the correct format for citing the paper are given at the top of the online (html) abstract.

Once the final published version of this paper is posted online, it will replace the preliminary version at the specified doi.

| 1  |                                                                                      |
|----|--------------------------------------------------------------------------------------|
| 2  | Morphological response of songbirds to                                               |
| 3  | 100 years of landscape change in North America                                       |
| 4  |                                                                                      |
| 5  | A. DESROCHERS                                                                        |
| 6  |                                                                                      |
| 7  | Centre d'étude de la forêt, Université Laval, Pavillon Abitibi-Price, 2405 rue de la |
| 8  | Terrasse, Québec, Qc, G1V 0A6 CANADA; and Laboratory of Ornithology, Cornell         |
| 9  | University, 159 Sapsucker Woods Road, Ithaca, NY 14850 USA. Tel. (418) 656-2131 ext. |
| 10 | 2908. Email : <u>andre.desrochers@sbf.ulaval.ca</u>                                  |
| 11 |                                                                                      |
| 12 | Running title: Morphological response to landscape change                            |
| 13 |                                                                                      |
| 14 |                                                                                      |
| 15 | Article type: Report                                                                 |
| 16 | Word count: 156 (Abstract), 3133 (Main text incl. references, without Tables and     |
| 17 | Figures).                                                                            |
| 18 | Figures: 2                                                                           |
| 19 | Tables: 1                                                                            |
| 20 |                                                                                      |

| 22 | Abstract. Major landscape changes caused by humans may create strong selection              |
|----|---------------------------------------------------------------------------------------------|
| 23 | pressures and induce rapid evolution in natural populations. In the last 100 years, eastern |
| 24 | North America has experienced extensive clear-cutting in boreal areas, while                |
| 25 | afforestation has occurred in most temperate areas. Based on museum specimens, I show       |
| 26 | that wings of several boreal forest songbirds and temperate songbirds of non-forest         |
| 27 | habitats have become more pointed over the last 100 years. In contrast, wings of most       |
| 28 | temperate forest and early-successional boreal forests species have become less pointed     |
| 29 | over the same period. In contrast to wing shape, the bill length of most species did not    |
| 30 | change significantly through time. These results are consistent with the "habitat isolation |
| 31 | hypothesis", i.e., songbirds evolved in response to recent changes in the amount of         |
| 32 | available habitat and associated implications for mobility. Rapid morphological evolution   |
| 33 | may mitigate, without necessarily preventing, negative consequences of habitat loss         |
| 34 | caused by humans through direct exploitation or climate change.                             |
| 35 |                                                                                             |
| 36 | Key words: Rapid evolution; Landscape Ecology; Wing shape; Morphology; Forest               |
| 37 | fragmentation; Habitat loss; Museum specimens.                                              |

39

#### INTRODUCTION

40 Whether species can adapt rapidly to unprecedented environmental change caused by 41 humans has become a major concern for ecologists (Rice and Emery 2003). Animals are 42 able to evolve behavioral and morphological adaptations rapidly enough to track 43 anthropogenic environmental change over decades or centuries, as illustrated by classic 44 studies of industrial melanism in moths (Ford 1937), bill size (Grant and Grant 1989) and 45 wing shape (Vanhooydonck et al. 2009) in Darwin's finches, and migratory behavior 46 (Berthold et al. 1992). Such rapid evolution may be facilitated by behavioral innovations 47 (Lefebvre et al. 2004) and may ultimately help population or even species to persist (Nicolakakis et al. 2003, Bell and Gonzalez 2009). However, gene flow may often inhibit 48 the ability of local populations to adapt to local or regional environmental dynamics 49 50 (Storfer 1999). The generality with which animals undergo rapid evolution in response to 51 environmental change remains unknown. 52 Forest loss and fragmentation have been major conservation concerns in recent 53 decades, although their evolutionary consequences generally have been ignored except 54 for gene flow reduction (Ashley et al. 2003). Forest loss and fragmentation should select 55 for higher mobility in animals, due to increased habitat isolation (Fahrig 2003), at least 56 when colonization of fragments remains possible for the most mobile individuals. In 57 birds, high mobility is often associated with pointed wings (Dawideit et al. 2009), 58 because they result in more energy-efficient sustained flight (Bowlin and Wikelski 2008). 59 Wing "pointedness" can evolve rapidly within species (Egbert and Belthoff 2003, Fiedler 60 2005), and is highly responsive not only to migratory distance (Winkler and Leisler 1992)

61 but also to the amount of regional movement (Senar et al. 1994). By imposing new

62 constraints on dispersal and other daily movements of birds, forest fragmentation may 63 require hundreds of additional kilometers of travel for individual birds each year, creating 64 a new selective pressure for more pointed wings, especially in the case of non-migratory 65 species. Conversely, reduced habitat fragmentation should favor rounder wings, given the 66 high cost of take-off (Swaddle and Lockwood 2003) or foraging with more pointed 67 wings, especially for species foraging close to the ground or in thick vegetation (Savile 68 1957, Marchetti et al. 1995).

69 North-eastern North America offers a unique "natural experiment" with which to 70 examine evolutionary change in birds in response to habitat loss and fragmentation. The 71 temperate part of this region (south of the Laurentian hills) suffered severe deforestation in the 19<sup>th</sup> century, followed by a reverse trend of afforestation in the 20<sup>th</sup> century (Foster 72 73 and Motzkin 2003). In contrast, boreal forests of eastern North America (Canadian 74 shield, Abitibi and Lac-St-Jean lowlands) have been subjected to extensive clear-cuts for most of the 20<sup>th</sup> century, leading to a sharp decline of old coniferous forests and their 75 76 replacement by younger mixed and deciduous stands (Imbeau et al. 2001, Boucher et al. 77 2009). If songbird fitness is reduced by the isolation caused by forest loss and fragmentation — as often implied and sometimes shown in the extensive literature on the 78 subject (Fahrig 2003) — we should expect evolutionary change in flight-related attributes 79 80 such as wing shape in parallel with major changes in habitat isolation (habitat isolation 81 hypothesis).

Using museum specimens, I examined changes in the morphology of forest birds of north-eastern North-America since the beginning of the 20<sup>th</sup> century. More specifically, I tested the following predictions : over the last century, species mostly

85 found in boreal, mature coniferous forests and temperate non-forest habitats evolved 86 more pointed wings in response to increased fragmentation, whereas species associated 87 with temperate mature forests and boreal early-successional forests evolved less pointed 88 wings because of relaxed selection for mobility. Additionally, I examined whether the 89 above predictions were better supported in non-migratory species than in neotropical 90 migrant species. Finally, I tested for temporal trends in culmen (bill) length as a 91 "control", to contrast temporal changes due to mobility with effects of landscape changes 92 unrelated to isolation. 93 94 **METHODS** I measured 851 specimens of fully grown (> 1 month post fledging) birds of 21 species 95 96 from the Cornell University Museum of Vertebrates and the Canadian Museum of 97 Nature. Specimens used here were collected between 1900 and 2008, throughout their species' geographic distribution (exceptions described below). I selected all species 98 99 meeting the following requirements : 1 > 10 specimens ranging over most of the last 100 100 years, 2) small enough to be measured with digital calipers, and 3) unambiguous 101 association to one of the following four groups: boreal mature forests, temperate mature 102 forests, boreal open areas (< 20 y old forest stands, shrubs, crops, or pastures), and 103 temperate open areas, based on Birds of North America monographs (Poole 2005). Two 104 exceptions were Red-breasted Nuthatch (Sitta canadensis) and Brown Creeper (Certhia 105 *americana*); these species breed extensively both in temperate and boreal forests. 106 Nuthatch specimens from both regions were measured but were analyzed separately. In 107 the case of Brown Creeper, I analyzed only specimens collected in Maryland, New

Hampshire, New York, and Ohio. Only specimens collected east of the Mississippi weremeasured in the case of species whose range extended to western North America.

110 I measured the distance between the carpal joint of the right wing and the distal 111 end of (a) the outermost secondary feather, and (b) wing tip (unflattened wing chord). I 112 used the ratio of distances 100\*(b-a)/b, also known as "primary projection", to evaluate 113 wing pointedness (Fig. 1). Left wings were used for measurement when right wings were 114 damaged or absent from the specimen (n = 24). I also measured the total length of the 115 culmen (bill) from skull to the distal end of the upper mandible. All measurements were 116 made with digital calipers under a dissecting microscope. Specimens with apparent molt 117 of flight feathers or extensive feather wear were infrequent (n < 30) and discarded from 118 analyses. A random sample of 128 specimens was measured twice (non-sequentially, i.e., 119 "blind"), to assess measurement error. Median differences between measurements of the 120 same specimens were 0.25 mm, 0.30 mm and 0.16 mm for secondary feathers, wing 121 chord and total culmen respectively, yielding intra-class correlation coefficients 122 (measurement repeatabilities) > 98.9 %. I estimated temporal changes in primary 123 projection for single species with linear models using the following covariates: year of 124 collection and sex. Mean temporal changes in primary projection for each of the four 125 species groups were obtained from mixed-effects linear models, with year of collection as 126 covariate, and species and sex within species as random effects (SAS Institute 2009). In 127 the case of mature forest species, migratory status (migrant or not) was also included as a 128 fixed-effect covariate (species from open habitats were all migrant). Mean changes in 129 culmen length for each of the four species groups were assessed with year of collection as 130 a covariate and species and sex within species as random effects. Model residuals were

| 131 | examined visually through diagnostic plots and no strong departures from normality or                   |
|-----|---------------------------------------------------------------------------------------------------------|
| 132 | homoscedasticity were noted. I did not use independent, phylogeny-based contrasts in the                |
| 133 | analysis, because I assume that phylogenetic relationships among species did not greatly                |
| 134 | influence significance testing, given the very short time periods involved, and the                     |
| 135 | presence of temporal change in a broad variety of the taxa examined.                                    |
| 136 |                                                                                                         |
| 137 | RESULTS                                                                                                 |
| 138 | Primary projection of half of the species selected for study changed significantly over the             |
| 139 | last century (Table 1). Only one of the 11 significant temporal trends (Wilson's Warbler,               |
| 140 | Wilsonia pusilla, Table 1) was opposite to the prediction from the habitat isolation                    |
| 141 | hypothesis (binomial test, $P = 0.01$ ). In accordance with predictions, songbirds of                   |
| 142 | temperate mature forests evolved rounder wings, while those of boreal mature forests                    |
| 143 | evolved more pointed wings, after inter-specific and sexual differences were accounted                  |
| 144 | for (Table 1; Fig. 2). Primary projection trends for birds of open areas such as fields and             |
| 145 | young forests were opposite to those of mature forest species of the same region, again                 |
| 146 | consistent with predictions. Temporal trends differed greatly among the four species                    |
| 147 | groups (mixed model, year × group interaction, $F_{3,803} = 32.1$ , $P < 0.0001$ ).                     |
| 148 |                                                                                                         |
| 149 | Additionally, there was evidence for regional differences in wing shape trends within                   |
| 150 | species: Red-breasted Nuthatch had increasingly pointed wings in boreal areas, and                      |
| 151 | rounder wings in temperate regions over the last century (region $\times$ year interaction $F_{1,74}$ = |
| 152 | 7.4, $P = 0.008$ ). Migratory status was unrelated to change in wing shape in the temperate             |

153 mature forest species (year × migratory status interaction:  $F_{1,250} = 1.08$ , P = 0.3).

However, over the last century, increase in primary projection was greater by 1.74 % ( $\pm$  0.86 SE) in residents than in migrants in the case of boreal mature forest species ( $F_{1,364} = 4.02, P = 0.046$ ). Wings of mature forest species were more pointed than those of species in young successional or open habitats (Table 1;  $F_{1,890} = 330.0, P < 0.0001$ ) suggesting an influence of foraging substrate. In contrast to wing shape, culmen length seldom changed over the last 100 years. It changed only in mature boreal species, with five of the six species having longer culmens (mean = 0.47 mm per 100 y, SE = 0.21,

162

161

 $t_{357} = 2.2, P = 0.03$ ).

163

#### DISCUSSION

164 These documented changes in avian wing morphology over the last century are 165 remarkably consistent with the hypothesis that forest loss and fragmentation induces 166 strong selection pressure for mobility. Only Wilson's Warbler did not fit the expectation 167 of the habitat isolation hypothesis, possibly because of misclassification of its habitat, 168 which is often riparian (Ammon and Gilbert 1999), or undocumented pressure on 169 movements, such as possible changes in wintering areas. These results provide new 170 evidence in support of the thesis that habitat loss and fragmentation have lasting 171 consequences on avian behavior, fitness and ultimately, evolution (see also Lens et al. 172 (1999)). That the physiological advantages of elongated wings (Bowlin and Wikelski 173 2008) and the isolation cost of habitat fragmentation (Fahrig 2003) would result in rapid 174 evolution of wing morphology is not trivial; alternatively, the selective pressure may 175 have been insufficient or overcome by gene flow, resulting in no measurable evolutionary response. Few studies on birds have shown fitness consequences of habitat 176

177 fragmentation, especially in terms of increased isolation (as opposed to effects that 178 fragmentation may have on habitat quality). However, in a meta-analysis of 80 avian 179 species, Lampila et al. (2005) showed that habitat fragmentation does have fitness 180 implications. Specifically, they showed that pairing success was the reproductive variable 181 most influenced by forest fragmentation, suggesting that fitness consequences of habitat 182 fragmentation are mostly the result of habitat isolation.

183 Of course, there are possible alternative explanations, given the large number of 184 factors responsible for avian wing morphology (Marchetti et al. 1995). Although primary 185 projection is not known to systematically change with age, wing length does change with 186 age in some species (Alatalo et al. 1984) and may have confounded temporal trends. 187 However, there was no measurable change in the proportion of first-year birds through 188 time in the 578 specimens measured for which age determination was reliable (logistic 189 regression: P > 0.17 in each group of species), thus making age-related bias in the 190 samples very unlikely. A second alternative explanation is that changes in primary 191 projection may simply reflect phenotypic, as opposed to genetic, change (Gienapp et al. 2008). However, body measurements are highly heritable, with narrow-sense  $h^2$  generally 192 193 between ~ 0.6 - 0.7 in the case of wing length, which as in this study combines but does 194 not distinguish skeletal and feather components (Boag and van Noordwijk 1987). Thus, 195 although various stresses on feather or skeletal growth may account for the patterns 196 observed, heritable variation almost certainly accounted for part of the temporal change 197 in primary projection. A third alternative hypothesis is that size measurements often vary 198 geographically and population shifts over constant collecting locations have been 199 responsible for the temporal trends, but this is unlikely given the broad geographic extent

200 of sampling locations for most species. Furthermore, if population shifts occurred, they 201 would have been non-random with respect to landscape changes; otherwise they would 202 have obscured the differences in temporal trends among species groups. Finally, changes 203 in primary projection possibly reflect changes in habitat other than isolation per se (e.g., 204 food resources). The difference in primary projection between mature forest species and 205 open/shrub species supports this idea, but the lack of temporal trends in culmen length in 206 species found outside mature boreal forests is inconsistent with the idea that changes in 207 foraging strategy are the main driving force behind temporal trends in wing shape. 208 Museum specimens have been used previously to document rapid evolutionary 209 change in birds (Smith et al. 1995) and mammals (Pergams and Ashley 1999). However, 210 museum specimens remain a relatively untapped data source that could provide key 211 information relevant to the fate of birds and other species in response to rapidly changing environments. The assumption that species do not respond adaptively to rapid 212 213 environmental change caused by humans is frequent and probably wrong in many cases, 214 and several authors have warned that this may lead to species mismanagement (Ashley et 215 al. 2003, Rice and Emery 2003, Stockwell et al. 2003, Bell and Gonzalez 2009). As with 216 their ability to adapt to climate change (Walther et al. 2002), birds' ability to adapt 217 rapidly to forest loss and fragmentation may mitigate, without necessarily preventing, the 218 risk of regional extirpation of extinction. Further research should investigate the potential 219 for rapid evolution in response to habitat fragmentation in other parts of the World, in 220 particular the tropics, where recent decline in habitat area, as well as lack of dispersal 221 ability in birds, are sometimes drastic. Hopefully this research will contribute to the

| 222 | emerging drive towards "evolutionary-enlightened management" (Ashley et al. 2003) of     |
|-----|------------------------------------------------------------------------------------------|
| 223 | species in the hope of reducing the risk of regional extirpation or extinction.          |
| 224 |                                                                                          |
| 225 |                                                                                          |
| 226 | ACKNOWLEDGMENTS                                                                          |
| 227 | This research was funded by a Natural Science and Engineering Research Council of        |
| 228 | Canada's Discovery Grant to the author. I thank Kim Bostwick and Charles Dardia          |
| 229 | (Cornell), as well as Michel Gosselin (Can. Mus. Nat.) for access to specimens and       |
| 230 | measurement equipment. André Dhondt, Stefan Hames, Wesley Hochachka, Walter              |
| 231 | Koenig, Kara Lefevre and Ben Zuckerberg provided criticism on an earlier version of this |
| 232 | article.                                                                                 |
| 233 |                                                                                          |
| 234 | LITERATURE CITED                                                                         |
| 235 |                                                                                          |
| 236 | Alatalo, R. V., L. Gustafsson, and A. Lundberg. 1984. Why have young passerine birds     |
| 237 | shorter wings than older ones? Ibis 126:410-415.                                         |
| 238 | Ammon, E. M. and W. M. Gilbert. 1999. Wilson's Warbler. in A. Poole, editor. The birds   |
| 239 | of North America Online. Cornell Lab of Ornithology, Ithaca, NY, USA.                    |
| 240 | Ashley, M. V., M. F. Willson, O. R. W. Pergams, D. J. O'Dowd, S. M. Gende, and J. S.     |
| 241 | Brown. 2003. Evolutionarily enlightened management. Biological Conservation              |
| 242 | 111:115-123.                                                                             |

| 243 | Bell, G. and A. Gonzalez. 2009. Evolutionary rescue can prevent extinction following     |
|-----|------------------------------------------------------------------------------------------|
| 244 | environmental change. Ecology Letters 12:doi 10.1111/j.1461-                             |
| 245 | 0248.2009.01350.x.                                                                       |
| 246 | Berthold, P., A. J. Helbig, G. Mohr, and U. Querner. 1992. Rapid microevolution of       |
| 247 | migratory behavior in a wild bird. Nature 360:668-670.                                   |
| 248 | Boag, P. T. and A. J. van Noordwijk. 1987. Quantitative genetics. Pages 45-78 in F.      |
| 249 | Cooke and P. A. Buckley, editors. Avian genetics: a population and ecological            |
| 250 | approach. Academic Press, London, UK.                                                    |
| 251 | Boucher, Y., D. Arseneault, L. Sirois, and L. Blais. 2009. Logging pattern and landscape |
| 252 | changes over the last century at the boreal and deciduous forest transition in           |
| 253 | Eastern Canada. Landscape Ecology 24:171-184.                                            |
| 254 | Bowlin, M. S. and M. Wikelski. 2008. Pointed wings, low wingloading and calm air         |
| 255 | reduce migratory flight costs in songbirds. PLoS ONE 3:1-8.                              |
| 256 | Dawideit, B. A., A. B. Phillimore, I. Laube, B. Leisler, and K. Böhning-Gaese. 2009.     |
| 257 | Ecomorphological predictors of natal dispersal distances in birds. Journal of            |
| 258 | Animal Ecology 78:388-395.                                                               |
| 259 | Egbert, J. R. and J. R. Belthoff. 2003. Wing shape in House Finches differs relative to  |
| 260 | migratory habit in eastern and western North America. Condor 105:825-829.                |
| 261 | Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of      |
| 262 | Ecology, Evolution, and Systematics 34:487-515.                                          |
| 263 | Fiedler, W. 2005. Ecomorphology of the external flight apparatus of Blackcaps (Sylvia    |
| 264 | atricapilla) with different migration behavior. Annals of the New York Academy           |
| 265 | of Sciences 1046:253-263.                                                                |

- Ford, E. B. 1937. Problems of heredity in the Lepidoptera. Biological Reviews 12:461501.
- Foster, D. R. and G. Motzkin. 2003. Interpreting and conserving the openland habitats of
- 269 coastal New England: insights from landscape history. Forest Ecology and
- 270 Management 185:127-150.
- Gienapp, P., C. Teplitsky, J. S. Alho, J. A. Mills, and J. Merilä. 2008. Climate change and
  evolution: disentangling environmental and genetic responses. Molecular Ecology
  17:167-178.
- Grant, B. R. and P. R. Grant. 1989. Natural selection in a population of Darwin's Finches.
- 275 American Naturalist 133:377-393.
- 276 Imbeau, L., M. Mönkkönen, and A. Desrochers. 2001. Long-term effects of forestry on
- 277 birds of the Eastern Canadian boreal forests: a comparison with Fennoscandia.
- 278 Conservation Biology 15:1151-1162.
- Lampila, P., M. Mönkkönen, and A. Desrochers. 2005. Demographic responses by birds
  to forest fragmentation. Conservation Biology 19:1537-1546.
- 281 Lefebvre, L., S. M. Reader, and D. Sol. 2004. Brains, innovations and evolution in birds

and primates. Brain, Behavior, and Ecology 63:233-246.

- Lens, L., S. van Dongen, C. M. Wilder, T. M. Brooks, and E. Matthysen. 1999.
- 284 Fluctuating asymmetry increases with habitat disturbance in seven bird species of
- a fragmented afrotropical forest. Proceedings of the Royal Society of London.
- 286 Series B, Biological Sciences 266:1241-1246.

| 287 Marchet | i. K T | . Price. | and A. Richman. | 1995. | Correlates | of wing | morphology with |
|-------------|--------|----------|-----------------|-------|------------|---------|-----------------|
|-------------|--------|----------|-----------------|-------|------------|---------|-----------------|

- foraging behaviour and migration distance in the genus *Phylloscopus*. Journal of
  Avian Biology 26:177-181.
- 290 Nicolakakis, N., D. Sol, and L. Lefebvre. 2003. Behavioural flexibility predicts species
- richness in birds, but not extinction risk. Animal Behaviour 65:445-452.
- Pergams, O. R. W. and M. V. Ashley. 1999. Rapid morphological change in Channel
  Island deer mice. Evolution 53:1573-1581.
- 294 Poole, A., editor. 2005. The Birds of North America Online:
- 295 http://bna.birds.cornell.edu/BNA/. Cornell Laboratory of Ornithology, Ithaca,
- 296 NY, USA.
- Rice, K. J. and N. C. Emery. 2003. Managing microevolution: restoration in the face of
  global change. Frontiers in Ecology and the Environment 1:469-478.
- 299 SAS Institute. 2009. SAS software. Version 9.2. SAS Institute Inc., Cary, NC, USA.
- 300 Savile, D. B. O. 1957. Adaptive evolution in the avian wing. Evolution 11:212-224.
- 301 Senar, J. C., J. Lleonart, and N. B. Metcalfe. 1994. Wing-shape variation between
- resident and transient wintering Siskins *Carduelis spinus*. Journal of Avian
  Biology 25:50-54.
- 304 Smith, T. B., L. A. Freed, J. K. Lepson, and J. H. Carothers. 1995. Evolutionary
- 305 consequences of extinctions in populations of a Hawaiian Honeycreeper.
- Conservation Biology 9:107-113.
- 307 Stockwell, C. A., A. P. Hendry, and M. T. Kinnison. 2003. Contemporary evolution
- 308 meets conservation biology. Trends in Ecology & Evolution 18:94-101.

- 309 Storfer, A. 1999. Gene flow and endangered species translocations: a topic revisited.
- Biological Conservation 87:173-180.
- 311 Swaddle, J. P. and R. Lockwood. 2003. Wingtip shape and flight performance in the
- 312 European Starling *Sturnus vulgaris*. Ibis 145:457-464.
- 313 Vanhooydonck, B., A. Herrel, A. Gabela, and J. Podos. 2009. Wing shape variation in
- 314 the medium ground finch (*Geospiza fortis*): an ecomorphological approach.
- Biological Journal of the Linnean Society 98:129-138.
- 316 Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M.
- 317 Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to
- 318 recent climate change. Nature 416:389-395.
- 319 Winkler, H. and B. Leisler. 1992. On the ecomorphology of migrants. Ibis 134:21-28.
- 320

- 322 **Table 1** Change in primary projection in 21 songbird species, 1900-2008. Migratory status based on winter distribution:
- 323 Residents (R) = year-round in their breeding range, Short-distance (SD) = mostly in continental US, long-distance (LD) = in the
- 324 Caribbean or south of continental US.
- 325

| Species                                     | Migratory | Migratory Primary  |          | SE   | Error | t     | Р       |
|---------------------------------------------|-----------|--------------------|----------|------|-------|-------|---------|
|                                             | status    | status projection  |          |      | df    |       |         |
|                                             |           | (% of wing chord)* | (/100 y) |      |       |       |         |
| Temperate mature forest                     |           |                    | -2.73    | 0.45 | 251   | -6.07 | < 0.001 |
| Red-breasted Nuthatch, Sitta canadensis     | R         | 25.4               | -1.65    | 1.78 | 17    | -0.92 | 0.369   |
| White-breasted Nuthatch, S. carolinensis    | R         | 30.2               | -2.14    | 0.95 | 47    | -2.24 | 0.030   |
| Brown Creeper, Certhia americana            | SD        | 23.7               | -3.64    | 1.49 | 35    | -2.44 | 0.020   |
| Pine Warbler, Dendroica pinus               | SD        | 26.4               | -2.24    | 1.77 | 21    | -1.26 | 0.221   |
| Black-throated Blue Warbler D. caerulescens | LD        | 24.2               | -4.59    | 0.81 | 44    | -5.66 | < 0.001 |
| Cerulean Warbler, D. cerulea                | LD        | 32.5               | -1.47    | 2.72 | 15    | -0.54 | 0.597   |

| Temperate open habitats              |    |      | 3 42  | 1.30 | 94  | 2.63  | 0.010   |
|--------------------------------------|----|------|-------|------|-----|-------|---------|
|                                      |    |      |       |      |     |       |         |
| Bay-breasted Warbler, D. castanea    | LD | 30.4 | 2.10  | 0.84 | 63  | 2.50  | 0.015   |
| Cape May Warbler, D. tigrina         | LD | 28.9 | 3.13  | 0.85 | 72  | 3.69  | < 0.001 |
| Yellow-rumped Warbler, D. coronata   | SD | 25.8 | 1.73  | 1.07 | 51  | 1.62  | 0.111   |
| Gray Jay, Perisoreus canadensis      | R  | 20.1 | 4.56  | 1.42 | 45  | 3.22  | 0.002   |
| Red-breasted Nuthatch, S. canadensis | R  | 24.5 | 3.24  | 0.96 | 56  | 3.36  | 0.001   |
| Boreal Chickadee, Poecile hudsonica  | R  | 18.5 | 4.23  | 1.29 | 73  | 3.28  | 0.002   |
| Boreal mature forest                 |    |      | 3.05  | 0.43 | 365 | 7.09  | < 0.001 |
| Scarlet Tanager, Piranga onvacea     |    | 31.0 | -1.50 | 0.94 | 40  | -1.00 | 0.104   |
| Samlat Tanagan Dingnag alingang      | LD | 21.0 | 156   | 0.04 | 40  | 1 66  | 0 104   |
| Hooded Warbler, Wilsonia citrina     | LD | 24.1 | -2.79 | 1.75 | 25  | -1.60 | 0.123   |

| Eastern Meadowlark, Sturnella magna     | SD | 22.2 | 2.17 | 2.38 | 21 0.91 | 0.372 |
|-----------------------------------------|----|------|------|------|---------|-------|
| Field Sparrow, Spizella pusilla         | SD | 17.5 | 0.89 | 2.70 | 26 0.33 | 0.743 |
| Henslow's Sparrow, Ammodramus henslowii | SD | 16.4 | 12.5 | 5.84 | 20 2.14 | 0.045 |
| Grasshopper Sparrow, A. savannarum      | SD | 20.0 | 4.20 | 2.06 | 24 2.04 | 0.052 |
|                                         |    |      |      |      |         |       |

| Boreal open habitats                     |    |      | -1.48 | 0.55 | 93 -2.70 | 0.008 |
|------------------------------------------|----|------|-------|------|----------|-------|
| Lincoln's Sparrow, Melospiza lincolnii   | LD | 20.2 | -0.94 | 1.56 | 16 -0.60 | 0.558 |
| Magnolia Warbler, D. magnolia            | LD | 22.3 | -1.85 | 0.64 | 37 -2.88 | 0.007 |
| Mourning Warbler, Oporornis philadelphia | LD | 23.6 | -1.94 | 1.22 | 26 -1.59 | 0.123 |
| Wilson's Warbler, Wilsonia pusilla       | LD | 21.9 | 7.31  | 2.84 | 11 2.57  | 0.026 |

326 \* Corrected for year (set to 1950).

#### 327 Figure Legends

- 328
- 329 FIG. 1. Measurements used to calculate primary projection in wings of museum
- 330 specimens, showing the distance between the carpal joint of the right wing and the distal
- and of (a) the outermost secondary feather, and (b) wing tip (unflattened wing chord).
- 332 Photo of female Scarlet Tanager, by A. Desrochers.
- 333
- **FIG. 2.** Change in primary projection in wings of four groups of eastern North American
- 335 songbirds since 1900. Species groups based on breeding range and habitat. Scales are
- 336 identical to facilitate comparisons.
- 337





Year collected