Ecosystem Ecology

- Read Chps 18-19 (know N, P, C cycles)
- Ecosystem: A community of organisms plus its nonlinving (=abiotic) environment
- At the individual level, the abiotic environment affects organisms (physiology, behavior, etc.)
- At the whole community level, organisms can also affect the abiotic environment

Ecosystems as machines

- Ecosystems process matter and energy
- Distinctly different approach from individual, population, & community ecology
 - mostly non-evolutionary
- more non-biological processes (chemistry, physics)
- Laws of physics determine a lot of what goes on in ecosystems

Simple laws of physics

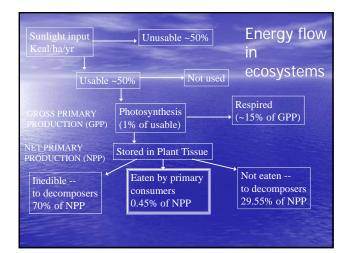
- Conservation of matter -- matter is neither created nor destroyed, only changed in form
- Conservation of energy -- energy is neither created nor destroyed, only changed in form
- Entropy -- Any transfer or change of energy cannot be 100% efficient. Some energy is degraded to lower quality, less useful energy (=heat)

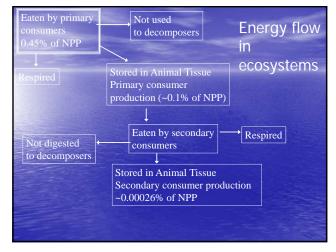
Energy

- Ability to do work
 - Kinetic -- energy now doing work
 - Potential -- energy stored (e.g., in chemical bonds within living organisms)

Consequence of entropy

- material moves spontaneously down a concentration gradient
- the reverse requires expenditure of energy
- Organisms move matter up concentration
- gradients by expending energy

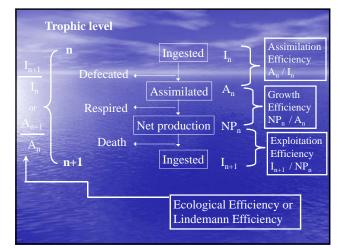

Energy flows within ecosystems


- Energy moves one way within ecosystems
- No cycles
- Every transfer results in reduction in usable energy (production of some heat)
- Input is energy from nonliving sources, primarily the sun via photosynthesis

Trophic levels: steps in energy transfer

- 1st trophic level -- Primary producers
- photosynthetic autotrophs, some chemosynthetic autotrophs
- 2nd tropic level -- Primary consumers
 heterotrophs consume primary producers (herbivores)
- 3rd trophic level -- Secondary consumers
 heterotrophs consume primary consumers (carnivores)
- 4th trophic level -- Tertiary consumers
- heterotrophs consume secondary consumers (carnivores)
- Decomposers -- mostly bacteria & fungi

 heterotrophs that consume dead organisms (detritivores)



Energy flow

• Most energy is either: - Respired (work, entropy) - Unused (to decomposers) Patterns vary a lot globally • Efficiency: Proportion of available

energy at one point in a food chain that is transferred to another point

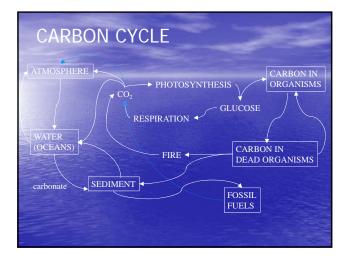
Efficiencies

Ecological (Lindemann) Efficiency -- transfer between adjacent trophic levels

5%

- Broadly averages <u>10%</u> (varies a lot)
- Assimilation efficiencies: - detritivore (rotten wood) 15% - herbivore (foliage) 30% 96% - carnivore
- Growth efficiencies: 33%
 - Ectotherms
 - Endotherms

Matter cycles

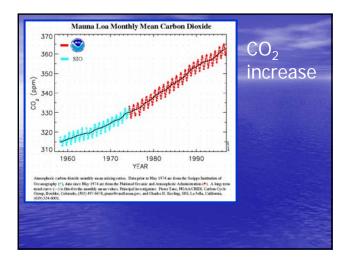

- Consequence of the conservation of matter
- Every element of any biological significance is cycled within ecosystems
- C, N, P, S, others
- Cycled from organisms to nonliving environment and back to organisms
- Example: Carbon cycle

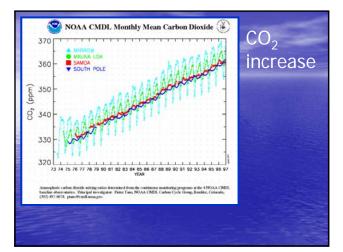
Carbon cycle

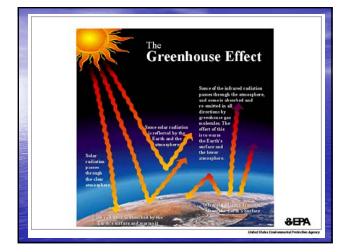
- Carbon -- primary molecule in organisms
- Photosynthesis:

LIGHT $- 6 CO_2 + 6 H_2O \rightarrow C_6H_{12}O_6 + 6 O_2$ • Respiration:

 $-\operatorname{C_6H_{12}O_6}+\operatorname{6O_2} \rightarrow \operatorname{6CO_2}+\operatorname{6H_2O}$

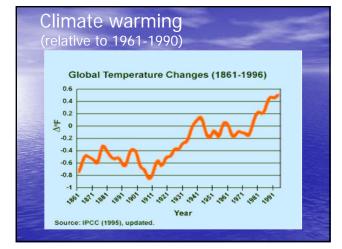


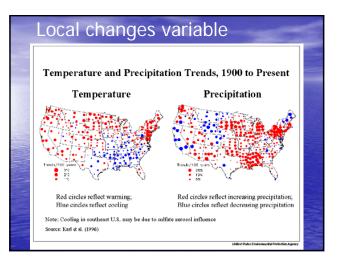

Carbon cycle


- current CO₂ ~391.03 ppm and rising

Fossil fuels & Carbon Cycle

- Read Ch. 19
- Burn fossil fuels at a high rate
- Carbon stored over millions of years released to atmosphere in a few decades
- Atmospheric CO₂ increases

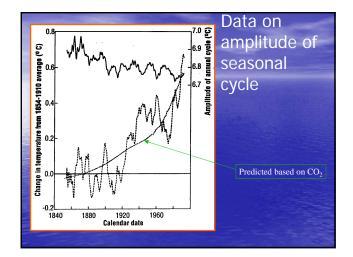

Consequences of CO₂ increase


- CO₂ absorbs infrared radiation heats atmosphere
- Visible light hits earth reradiated as infrared
- Greenhouse effect -- heats atmosphere
- Expectation: with addition of more $CO_{2^{\prime}}$ climate of earth changes
- Global climate change
- "Global warming"

Other greenhouse gases

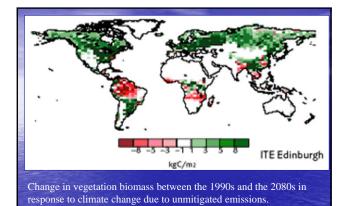
- H₂O, CH₄, N₂O, & flourocarbons also absorb infrared radiation
- Also increased by human activities
- CH₄ absorbs 25X more infrared than CO₂
- N₂O absorbs 320X more infrared than CO₂

Sources of greenhouse gases Table 1-1, (IPCC 1995)							
Sources	CO ₂	N ₂ O	CH ₄				
Natural		• Microbial activity in soil	• Wetlands • Termites • Oceans & freshwater				
Anthropogenic	Fossil fuel combustion Net emissions from changes in tropical land use	 Land clearing Biomass burning Fossil fuel combustion Nitrogenous fertilizer 	 Fossil fuel mining & processing Rice paddies Enteric fermentation Animal waste Domestic sewage treatment Landfills Biomass burning 				



Are these changes predicted by greenhouse models?

- Last 40 years -- average temperature ↑ by ~ 0.2 to 0.3°C
- Climate models based only on greenhouse gases predict ↑ of 1.0°C
- Improved models incorporate aerosols (small particles) that reflect solar radiation
- Yield much more accurate predictions (global & local)


Alternative hypothesis

- Change in solar input
- Sun heats in summer & winter but more in summer
- Change in solar input \Rightarrow raise temperature more in summer than in winter
- **Predict:** Amplitude of seasonal temperature cycle should increase

The future

- Atmospheric CO₂ increase & other changes
 - average temperature ↑ 1.0 3.5°C (now to 2100)
 - average precipitation \Uparrow , mostly in winter
 - summers may be drier
 - lots of local variation
 - predicted loss of vegetation biomass in tropical rainforests
 - much more to this than "global warming"

The consequences

- Natural ecosystems
 - distributions change
- productivity, energy flow, cycles change
- Predictions have high uncertainty

The consequences

- Health effects (direct & indirect)
 - -heat
 - tropical diseases
 - Dengue
 - Yellow fever
 - Malaria
 - Shistosomiasis
 - Dependent also on land use changes
- Uncertainty high

The consequences

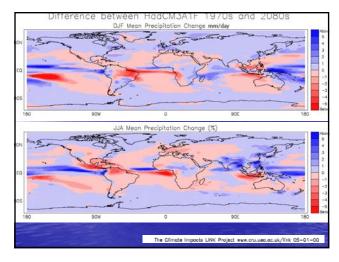
Agriculture

- Importance of location
- Northern areas: agricultural production increases
 - Greater duration of growing season
 - Greater CO₂
- South: Europe, S. America: production declines
 - Reduced precipitation
- Summer drought
- Uncertainty high

The consequences Sea level - + 10 - 25 cm in past 100 years - Predict +45 cm by 2100 • New York, Baltimore, Miami Netherlands, Bangladesh -Causes Expansion • Melt Antarctic ice surge

Dilemma


- Human population and economic activity increase CO₂
- Predicted to produce climate change
- Effects uncertain
- Uncertain costs vs. known economic benefits
- Action?


- Policy Adapt to new climate
- Reduce greenhouse gas emissions
- Given:
 - Economic benefits of fossil fuel use
 - Growing population
 - Economic development
- Adaptation to climate change seems likely.
- However, reducing emissions is possible
- Expect elected officials to address the issue

Individual action

- Energy conservation
- Population
- Consumption

	Year	Total	Population (millions)	Per capita emissions (t CO ₂ -e)
Australia	1998	518.5	18.75	27.6
	1998	662.0	30.25	21.9
	1998	74.6	5.30	14.1
	1998	481.6	58.40	8.2
	1998	975.4	82.05	11.9
	1998	57.3	3.71	15.4
	1998	515.8	57.59	9.0
Japan	1997	1280.4	126.09	10.2
Netherlands	1998	224.2		14.3
New Zealand	1998	53.5	3.79	14.1
Norway	1998	36.5	4.43	8.2
Russian Fed.	1996	1086.3	147.74	7.4
Spain	1998	331.2	39.37	8.4
Sweden	1998	42.6		4.8
UK	1998	672.7	59.26	11.4
USA	1998 CC 2001b: World Bank 2	5806.2	274.89	21.1

