Community Change

• Another community property -- change over time
• Species turnover
• Succession
 – Replacement of one type of community by another
 – Nonseasonal directional pattern of colonization & extinction of species

Succession

• An extremely influential idea in the study of terrestrial plants
• Has also been studied in animal communities
 – intertidal invertebrates
 – carrion
• Has also been studied in microbial communities

Two kinds of succession

• Primary Succession
 – Community change on land that has had no previous community present
 – e.g., previously under water or ice for a long time, formed volcanically
• Secondary succession
 – Community change after an extant community has been removed, by man or natural catastrophe
 – e.g., abandoned farm land, after fire
 – soil seed bank remains

Primary succession
Glacial retreat, Glacier Bay, Alaska
Example: Glacial retreat

- Since 1750, glaciers retreated 98 km
- Expose bare crumbled rock & little soil
- Under ice for 100’s or 1000’s of years
- Initially low N, pH ~7.0 - 8.0
- Distance from glacier indicates time since exposure

Successional sequence

1. Mosses & Lichens
 - Fireweed
 - *Dryas* (N fixing)
2. Willow (pH = 7.6)
3. Cottonwood, Spruce (50 yr)
4. Hemlock
5. (WET) *Sphagnum* moss
 - (DRY) Spruce, Hemlock

Primary succession

Lake level decline

- Lake Michigan dunes
- Positions of ancient beaches still visible
- Expose bare sand
- Under water for 1000’s of years
- Initially low N
- Distance from water indicates time since exposure

Successional sequence

1. Marram grass
 - roots stabilize sand, adds organic matter
2. Sand reed grass
 - Little Bluestem
 - Sand Cherry, Willow
3. Cottonwood (1st tree)
4. Jackpine
5. Black oak (~100 - 150 yr.)
 - + associated shade tolerant shrubs
 - 12,000 years … still Black oak
Secondary succession
Abandoned farm

- Old field, NC
- Farm land
- Original forest cleared 100 - 300 yr. ago
- Soil already well developed
- Seeds present in soil

Successional sequence

1. Crabgrass
2. Horseweed, Ragweed (1 yr.)
 - Horseweed self inhibitory
3. Aster, Ragweed (2 yr.)
4. Broom sedge (3 yr.)
5. Pines (5 - 15 yr.)
6. Oaks, Hickories (50 - 100 yr.)

What drives succession?

- Pattern of (apparently) orderly change is obvious
- Hypotheses about causes
 - numerous
 - controversial
 - long history

Clements

- F. Clements, Early 20th century U.S.
- Plant community is an integrated superorganism
 - Different components (species) seem to work toward some end point
 - Primary succession analogous to development
 - Secondary succession analogous to healing
- Climax community -- self-replacing vegetation; the mature superorganism
Superorganism

- Popular concept, widely cited in early ecological literature
- Non-scientific, based on pre-Darwinian philosophy
- H. Gleason (1920s) provided alternative
 - Individual explanation for why/how species replace each other
- Modern hypotheses based on individual mechanisms

Modern hypotheses

- Summarized by Connell & Slatyer in 1977
- Three mechanisms drive species replacement
 - Facilitation
 - Tolerance
 - Inhibition
- Null hypothesis
 - Random colonization & extinction

Facilitation hypothesis

- Succession proceeds because early species make site more suitable for later species
- Early species only are capable of colonizing barren sites
 - specialists on disturbed sites
- Climax species facilitate their own offspring
- Primary process: Site modification (soil)

Tolerance hypothesis

- Succession proceeds because later species outcompete early species
- Adults of any species could grow in a site
- Which species starts succession
 - Chance
 - Dispersal ability
- Early species have no effect on later species
- Later species replace early species by competition
- Climax species are the best competitors
- Primary process: Interspecific competition
Inhibition hypothesis

- Adults of any species could live at a site
- Which species starts succession
 - Chance
 - Dispersal ability
- Early species inhibit (out compete) later species
 - Persist until disturbed
- Later species replace early species after disturbance

Inhibition Hypothesis

- Climax species are most resistant to disturbance
- Primary process: Priority effects

Random colonization hypothesis

- Nothing but chance determines succession
- No competition, no facilitation, no inhibition
- Colonists arrive at random
- Species in the community go extinct at random

Each hypothesis makes testable predictions

- Is there a well-defined set of early species?
- Is the sequence of species predictable?
- What are the characteristics of the climax species?
- What happens if early species are removed?
- What happens if late species are transplanted into an early site?
Predictions

<table>
<thead>
<tr>
<th></th>
<th>Facilitation</th>
<th>Tolerance</th>
<th>Inhibition</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early spp.</td>
<td>Well defined set</td>
<td>Unpredict.</td>
<td>Unpredict.</td>
<td></td>
</tr>
<tr>
<td>Successional sequence</td>
<td>Highly predictable</td>
<td>Moderately predictable</td>
<td>Relatively unpredictable</td>
<td>Unpredictable</td>
</tr>
<tr>
<td>Climax spp.</td>
<td>Facilitate offspring</td>
<td>Best competitors</td>
<td>Resist disturbance</td>
<td></td>
</tr>
<tr>
<td>Remove early spp.</td>
<td>Succession stops</td>
<td>Late species unaffected</td>
<td>Late species accelerated</td>
<td></td>
</tr>
<tr>
<td>Transplant late spp. to early site</td>
<td>Cannot survive</td>
<td>Grow & survive with early spp.</td>
<td>Grow & survive if early spp. removed</td>
<td></td>
</tr>
</tbody>
</table>

Data: Which hypothesis?

- Succession in different places or at different times may proceed via different processes
 - each hypothesis may be accurate somewhere
- Succession in one place may involve >1 process
 - within a sequence, all hypotheses may be accurate for some species

Generalizations

- **Facilitation**
 - Common in primary succession
 - pioneers stabilize and add to soil
 - e.g. Saguaro cactus
 - late successional, Sonoran desert
 - grow only in shade of “nurse plants”
 - Less common in secondary succession

- **Hypotheses are not mutually exclusive when the whole community is considered**
Generalizations

- **Tolerance**
 - common in old field, secondary succession
 - e.g. Northern midwest
 - later grasses better competitors for nutrients, light
 - early species better dispersers
 - e.g. Species removal, secondary succession (Ohio)
 - early -- annuals, biennials
 - late -- perennials

Removal experiment #1

- Remove annuals + biennials
- Facilitation: Perennials ↓
- Tolerance: Perennials NC
- Inhibition: Perennials ↓
- Result: Perennials Unaffected

Removal experiment #2

- Remove perennials
- Facilitation: Annuals NC
- Tolerance: Annuals ↑
- Inhibition: Annuals NC
- Result: SMALL Increase in annuals

OVERALL: Most consistent with TOLERANCE
Clearly inconsistent with INHIBITION

Generalizations

- **Inhibition**
 - Algal succession in intertidal
 - Grazing and drying the main disturbances
 - *Ulva* (green) *Gigartina* (red)
 - Remove *Ulva*, growth of *Gigartina* increases
 - *Ulva* holds a site until disturbance kills it
 - *Gigartina* survive beneath *Ulva*
 - *Gigartina* has a persistent & resistant holdfast
Secondary Succession

- No guarantee that secondary succession leads back to original climax vegetation
- e.g., tropical rainforest
 - nutrients (N, P, K, etc.) held mostly in biomass, not soil
 - cut forest, remove biomass
 - nutrients leach from soil rapidly
 - new soil conditions do not foster forest regeneration

Dispersal & Colonizing ability

- Some species specialize on exploiting newly opened sites
- Natural disturbances: tree fall gaps, local fires
 - widely spread in space, unpredictable
 - colonizing species need to:
 - be good dispersers
 - grow quickly to exploit newly opened sites

Early vs. Late successional species

<table>
<thead>
<tr>
<th></th>
<th>Early species</th>
<th>Late species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeds / biomass</td>
<td>Many</td>
<td>Few</td>
</tr>
<tr>
<td>Seed size</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Dispersal</td>
<td>Wind, Birds, Bats</td>
<td>Gravity, Mammals</td>
</tr>
<tr>
<td>Dormancy in soil</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>Herbivory</td>
<td>Low resistance</td>
<td>High resistance</td>
</tr>
<tr>
<td>Shade tolerance</td>
<td>No</td>
<td>Tolerant</td>
</tr>
</tbody>
</table>