Animal Physiological Ecology

Regulation: Temperature

- Most terrestrial vertebrates are temperature regulators
- Endotherms (birds, mammals):
 - regulate by internally generated metabolic heat
 - cool by evaporation
 - 37- 40 ° C
- Ectotherms (reptiles, amphibians)
 - regulate by behavioral choices
 - choose environments to alter heat gain/loss

Components of Heat Balance Equilibrium Temperature: Heat input = Heat output

Inputs

- Radiation (direct, reflected)
- Conduction (solid -- solid)
- Metabolism
- Convection (solid -- fluid)

Outputs

- Re-radiation
- Conduction (solid -- solid)
- Evaporation
- Convection (solid -- fluid)

$Hs = Hm \pm Hcd \pm Hcv \pm Hr - He$

Hs = heat stored in bodyHm = heat gained from metabolism Hcd = heat gained or lost through conduction Hcv = heat gained or lost through convection Hr = heat gained or lost through radiation He = heat lost through evaporation

Heat balance for an ectotherm

Position and radiant heat input

Maximize surface Low Tb Minimize surface High Tb

Three views of thermoregulation How do animals thermoregulate? Behavioral mechanisms Physiology Precision of control Why thermoregulate? What is the advantage? Optimize function (e.g., enzymes) Ultimate fitness value How does thermoregulation affect distribution and abundance?

Lizard thermoregulation Sceloporus -- Spiny desert lizards Insectivorous Sceloporus merriami Texas Oviparous -- lays eggs Sceloporus jarrovi Arizona Viviparous -- gives birth, no eggs laid

Sceloporus merriami

Sceloporus merriami (from Grant 1990 Ecology 71:2323-2333) Summer active period: 7:30 AM - 2:00 PM • 6:00 PM - 9:00 PM Avoids heat of midday retreats to burrow within its home range • Body temperature (T_b) mean <u>+</u> SE Morning: 33.3 ± 0.10 °C Evening: 37.0 + 0.20 °C

Why 2 different temperatures?

- Lizards behave similarly morning & evening
 at 33°C
- sprint speed is 25% greater than at 37°C
 water loss is 33% less than at 37°C
 metabolic rate is 40% less than at 37°C
 Why have a 4°C greater T_b in the evening?

What temperatures are *available* to the lizard?

What are its choices, particularly in the evening?

Determine thermal properties of the Lizard

- Copper model of the lizard
- Thermocouple implant
- Paint lizard colors
- Place in locations within home range and allow to equilibrate

Yields possible T_b

Evening: 50-60% of locations within the home ranges yield 36°C ≤ T_b ≤ 38°C
 If lizard avoids those high temperatures, hunting areas would be greatly reduced
 Cost of maintaining ideal T_b (i.e., 33°C) high

Results

Morning: <20% of locations within home ranges yield 36°C ≤ T_b ≤ 38°C
 Cost of maintaining ideal T_b low

Results

- Midday: Nearly all locations yield $T_b > 38^{\circ}C$
- Maintaining ideal T_b impossible
- Lethal T_b likely
- Become inactive

Why 2 different temperatures?

- Higher-than-optimal T_b in evening represents a <u>Constraint</u>
- A limitation imposed by the environment
- Maintaining a non-ideal temperature is necessary to realize benefits of activity (foraging, mating, etc.)
- Limits placed on distribution

Sceloporus jarrovi

Sceloporus jarrovi

 Mathies & Andrews 1997. Functional Ecology 11:498-507
 ALSO ... Beuchat & Ellner 1987. Ecological Monographs 57:45-60

Sceloporus jarrovi

Viviparous

- T_b in the field (from Beuchat & Ellner 1987)
 - Adult males Mean $T_b = 34^{\circ}C$ (SD = 1.4°C)
 - Nonpreg. females Mean $T_b = 34^{\circ}C$ (SD = 1.4°C)
 - Pregnant females Mean $T_b = 32^{\circ}C$ (SD = 1.4°C)
- SD -- Average deviation from mean
- 68% of observations within 1 SD of mean
- Why is there a difference in T_b?

Hypotheses (Mathies & Andrews)

- Pregnant females actively select lower temperatures
- Higher T_b would reduce fitness of pregnant females, because it would be harmful to:
 - pregnant females
 - embryos
 - both

Testing Hypothesis 1 Environmental chamber Post-partum females, Pregnant females

41°C

Thermal Gradient experiment

- Place females in the gradient box
- Measure T_b of females allowed to range freely
- Compare pregnant vs. post-partum females
- Three times during the day

Fig. 3. Mean selected body temperatures (± 1 SE) of female Sceloporus jarrovi (n = 18) when pregnant and postpartum measured at three times during the main portion of the daily activity period.

Results & Conclusions

- *T_b* Significantly lower for pregnant females
- Overall:
- pregnant females 32.1 ± 0.1°C
 post-partum females 33.5 ± 0.5°C
 T_h less variable for pregnant females

First hypothesis supported

- Females choose a lower T_b when pregnant
- Temperatures chosen in the laboratory similar to temperatures observed in the field
- So, what is detrimental about higher T_b ?

Testing Hypothesis 2

Pregnant females Incubator temperatures: Day = 35.7°C, Night = steady decline to 15°C Day = 32.0°C, Night = steady decline to 15°C Thermoregulation treatment females in terraria with incandescent light • able to regulate T_{b} light off at night

Testing hypothesis 2

- Maintain pregnant females in three conditions (35°, 32°, & T_{reg}) until young are born
- Record:
 - growth of female (increase in mass, SVL)
 - abnormalities of neonates
 - dry mass of neonates
 - yolk in neonates
 - growth of neonates over 9 days (mass, SVL)

Testing hypothesis 2

- Predict: If high T_b harms pregnant females, then 35° treatment should have
 - Iower survivorship
 - Iower growth in mass or length
- Predict: If high T_b harms embryos, then 35° treatment should have
 - more abnormalities
 - smaller size at birth (mass, SVL)
 - smaller sizes at 9 days

Results: Effects on females

- None
 Survival = 100% for all
 Growth not significantly altered by treatment
 High temperature has no effect on
 - females performance

Results: Abnormalities

Of 15 females in each treatment:

- at 35°C ... 4 females produced 1 or more abnormal or dead offspring
- at 32°C ... 1 female produced 1 or more abnormal or dead offspring
- in T_{reg} ... no females produced abnormal or dead offspring

abnormalities rather rare, hard to say much

Results: Effects on embryos

Variable	35°	32°	T _{reg}	Significant
Devel. Time (d)	32.7 <u>+</u> 1.9	37.3 <u>+</u> 1.9	40.0 <u>+</u> 2.0	<i>P</i> <0.05
SVL (mm)	25.83 <u>+</u>	- 26.85 <u>+</u>	26.72 <u>+</u>	- <i>P</i> <0.001 -
Day 0	0.19	0.19	0.20	
SVL (mm)	-29.45 <u>+</u>	30.66 <u>+</u>	-30.33 <u>+</u> -	<i>P</i> =0.012
Day 9	0.28	0.28	0.28	
Mass (g)	0.59 <u>+</u>	0.66 <u>+</u>	0.66 <u>+</u>	<i>P</i> =0.002
Day 0	0.02	0.02	0.02	
Mass (g)	0.89 <u>+</u>	0.98 <u>+</u>	0.96 <u>+</u>	P=0.08
Day 9	0.03	0.03	0.03	

Conclusions

- High temperature actually increases development rate of embryos
- However, high temperatures reduce mass and SVL at birth
- Effects of high temperatures remain for up to 9 days after birth
- This size effect is probably sufficient to affect offspring fitness (survival)

Overall conclusions

Pregant females actively regulate at a lower T_b because of negative effects of high temperature on offspring fitness How might this evolve? • Quantitative trait: T_b when pregnant • Fitness differential (S): females with $T_b =$ 32°C

Temperature regulation

- Poikilotherms don't regulate internal temperature; temperature varies with environment
- Ectotherms rely on external sources of energy to regulate body temperature
- Endotherms rely on internally derived metabolic heat energy
 - homeotherms: birds and mammals (maintain relatively constant body temperature, as opposed to certain fish and insects that only heat critical organs)

Endothermic Thermoregulation

Thermal Neutral Zone - Range of temps over which metabolic rate of homeothermic animal doesn't change
What causes increase in MR at low temps? High temps?

Low Temps Humans – shivering – heat through muscle contraction Release hormones – increase metabolic rate (rate at which metabolize energy stores) – increases generation of heat.

High Temps – heart rate and blood flow to the skin increases – transports heat from the body to skin increases convective heat loss,

Evaporative cooling accelerates heat loss (large endotherms -horses, humans, camels sweat, Dogs birds - pant, marsupials, rodents moisten body surfaces with saliva).

Can define two groups based on differences in the widths of thermoneutral zones

Tropical species – narrow zone

Arctic Species – broad zone

Important point – thermoregulation outside of thermal neutral zone costs energy which could otherwise be directed to other processes.

Te = G+M+R

Life History Theory - the schedule and duration of key events in an organism's lifetime are shaped by natural selection to produce the largest possible number of surviving offspring. Life history characteristics are traits that affect the <u>life</u> <u>table</u> of an organism, and can be imagined as various investments in growth, reproduction, and survivorship. The goal of life history theory is to understand the variation in such life history strategies.

This knowledge can be used to construct models to predict what kinds of traits will be favored in different environments.

The key to life history theory is that there are limited resources available, and focusing on only a few life history characteristics is necessary.

Examples of some major life history characteristics include: Age at first reproduction Reproductive lifespan and aging Number and size of offspring

Temperature regulation in aquatic endotherms

- Water temperature much more stable than that of air (takes much greater change in energy content to heat/cool water)
- Convective and conductive heat loss in water is far more rapid (20-100x) than in air
- Gills expose a large surface area to this vast heat sink
 - Because of these constraints, few aquatic animals are endothermic

Temperature regulation in aquatic endotherms

Aquatic mammals – can be endothermic due to:

- Air-breathing (no gills)
- Insulation (blubber/fat or thick fur)

Countercurrent heat exchangers (also found in endothermic fish, e.g., tunas and white sharks)

Countercurrent Heat Exchange

Vascular arrangements reduce the amount of heat loss to the aquatic environment

Sociable Weaver

< 10mm (0.4") /yr

Water Balance

Water content of most organisms 50-90%

Survival requires maintenance

Water Conservation

water proofing to reduce evaporation

- concentrated urine or feces
- behavioral adaptions

Case Study – Kangaroo Rats (*Dipodomys*)

Metabolic water can also be important C6H12O6 + CO2 \rightarrow CO2 + H2O

Result - Urine 17x more concentrated than blood

 food high in carbohydrates

stored in burrows

Nocturnal behavior largely due to water conservation not avoidance of high temperatures

Reproduction correlates with rainfall

Temperature regulation in endothermic insects

- Bumblebees use metabolic heat to warm their flight muscles
- Large moths maintain fairly constant metabolic rate and regulate temperature via conductive and convective cooling / heating

Physiological Ecology Summary

Ecology of individuals

- Adaptive value of physiological traits
- Homeostasis (e.g., thermoregulation)

"How" vs. "Why" questions

- Costs and constraints (e.g., S. merriami)
- Benefits related to fitness (e.g., S. jarrovi)

Behavioral Ecology

- Another aspect of the ecology of individuals
- The relationship between the living and nonliving environment and the actions of animals

Topics within behavioral ecology

- Foraging how environment influences choice of what, how, when, where to eat
- Social systems how environment influences how individuals interact with conspecifics; living in groups
- Sex and mating systems environmental determinants of mating and reproduction

Behavioral ecology focuses on adaptation and evolution Main focus is on the adaptive value of observed traits in a given environment There can be questions of both how and why concerning behavior In both cases, approach is similar to that seen in physiologial ecology (costs, benefits, constraints)

Living in groups

- Many animals live in groups with conspecifics
 - Birds form feeding flocks, migrating flocks
 - Herds of herbivorous mammals
 - Schools of fish
 - Insect aggregations (e.g., monarch butterflies)
- What determines group size?What are benefits and costs?

Major benefits of group living

- Improved foraging success
- Improved defense against enemies
- Improved ability to cope with the physical environment

Case Study – Sonoran Desert Cicadas

Ta = 46° C – higher than upper lethal Tground = 70° C Tb = 37° C

Actively calling during hottest part of day

Hyp1 – use microclimates effectively Hyp2 – use evaporative cooling

Feeds on xylem from Mesquite trees

Found capable of evaporative cooling

Placed in Env Chambers – no access to cool microclimates

 $Ta = 45.5^{\circ}C$ Tb = 37 - 42°C

1. Relative Humidity 100% Ta = 45.5° C Tb = 45.5° C

2. Relative Humidity 0% Ta = 45.5° C Tb = 41° C

How are results consistent with evaporative cooling?

2nd group of experiments

Placed humidity sensors above cuticle
As Ta increased rate of water
movement increased

- Rate of water loss highest ever reported for insect

Sonoran desert cicada. Pores 7X size of pore canals located on dorsal mesonotum + connected to special dermal glands via cuticular ducts are involved in water transport to the surface. Cooling of 2-5oC below ambient of 42-45oC.

