
Chapter 6 Implementation of Logic Circuits with Standard Logic Chips

Once logic circuits have been designed with generic logic devices, the next step is to implement the
design in physical hardware. The first approach we will study is to use standard logic chips,
integrated circuits that contain a small number of logic devices. The second approach, using
programmable logic hardware, will be addressed in Chapter 8.

To implement a design with logic chips, it is necessary to know what chips are available and what
their limitations are. Real devices need to be connected to power, and sometimes there will be
unused gates or inverters we’ll have to deal with. With a generic design, a single output can drive
dozens of inputs, but with real devices there is a limit. The outputs of real devices also don’t change
instantly when an input changes, so if the design is time critical, this delay must be analyzed and
minimized.

6.1 Logic Families

In order to build a digital circuit using standard logic chips, it is necessary to understand logic
families. A logic family is a set of integrated circuits that implement various logical operations using
the same technology, voltage supply and digital signal levels. As long as a circuit is made from a
common logic family, all the inputs and outputs will be compatible. Logic families are often
grouped by technology as shown in Table 6-1.

Table 6-1 Some Popular Logic Families

Technology Family Description
TTL LS Low Power Schottky
 LV Low Voltage
 ALS Advanced Low Power Schottky
CMOS HC/HCT High Speed CMOS (HCT is TTL compatible)
 AC/ACT Advanced CMOS (ACT is TTL compatible)
 AHC/AHCT Advanced High Speed CMOS (AHCT is TTL compatible)

Some authors use the term logic family to refer to the technology and the term logic subfamily to
refer to the logic family. This may seem confusing, but usually the meaning is clear from context.

The industry standard for logic device nomenclature today is the 5400/7400 series (originally
developed by Texas Instruments); it is by far the most common and encompasses a great many
logic families. The difference between the 5400 and the 7400 series is that the 5400 series devices
operate over the military temperature range of -55°C to 125°C, and the less expensive 7400 series
devices need only operate over the commercial temperature range of 0°C to 70°C.

Under this nomenclature, each device has a part number that conforms to the format shown in
Figure 6-1.

Figure 6-1 Part Number Format for Most Logic Devices.

Integrated circuits (ICs) can be packaged in many different ways. The oldest package is the DIP
(dual in-line package) or PDIP (plastic dual in-line package) shown in Figure 6-2a. The pins of the
package are designed to be inserted through holes in a printed circuit board and soldered, but the
pins work well in sockets and prototype boards as well. When devices started to be mounted
directly to the surface of printed circuit boards, however, a different (and smaller) package was
required. The first was the Small Outline Integrated Circuit (SOIC or SO) package (Figure 6-2b). This
package soon was available in narrow, wide and micro. Later came the Small Outline Package (SOP),
and that was soon available in thin and shrink varieties. (There are even more IC packaging options,
but they are more suitable for ICs with more pins than logic chips usually have.)

(a) (b) (c)

Figure 6-2 Packages (a) PDIP, (b) SOIC and (c) SOP.

74 for Commercial grade
54 for Military grade

Logic Family.
LS = Low Power Schottky TTL

Device Number.
04 = Hex (package of 6) Inverters

Manufacturer Specific Suffix.
Package, Temperature grade, etc.

74 LS 04 N

Not all manufacturers supply all of the package types, and each manufacturer defines its own suffix
codes to specify the package (although N usually implies a DIP package). This makes ordering parts
particularly challenging, and it is important to take extra care to get the correct package.

The set of logic operations available for these logic families is rich and diverse, for example, there
are inverters, buffers, nand-gates, nor-gates and-gates and or-gates. Nand gates, for example, have
2-input, 3-input, 4-input and 8-input versions, and if more inputs are needed, multiple logic devices
can be combined. The device numbers for these basic logic functions are listed in Table 6-2.

Table 6-2 Basic 7400 Series Logic Devices

Device Description Device Description
74xx00 Quad, 2-input NAND gate 74xx20 Dual, 4-input NAND gate
74xx02 Quad, 2-input NOR gate 74xx21 Dual, 4-input AND gate
74xx04 Hex Inverter 74xx27 Triple, 3-input NOR gate
74xx08 Quad, 2-input AND gate 74xx28 Dual, 4-input NOR gate
74xx10 Triple, 3-input NAND gate 74xx30 8-input NAND gate
74xx11 Triple, 3-input AND gate 74xx32 Quad, 2-input OR gate

6.2 Circuit Implementation with Standard Logic

When logic circuits are implemented in hardware with standard logic chips, three changes must be
made to the schematic: First, all the chips in a design must have a designator (usually the letter U
followed by a number). It is not unusual for a single chip to contain several logic devices. So to
designate an individual gate or inverter within an IC, we add a letter (A, B, C, etc.) to the designator.
Second, each connection to a device requires a pin number outside of the symbol. The pin
assignments can be found in the datasheet (a document the gives all the specification for a given
part). Third, the schematic must show connections to VCC and ground. (The generic schematics in
Chapter 5 do not show power and ground connections, but without them, no logic device will
work). To illustrate, consider the circuit from Example 5-2, repeated for convenience in Figure 6-3.

Figure 6-3 Generic Schematic from Example 5-2.

Figure 6-4 illustrates the changes that are necessary to the schematic. Note that each logic device
has a designator and pin numbers and that one of them shows the connections to VCC and ground.

+ଶതതതܤ) ܮ.(ܤ
ଶܤ) + ܮ.(ଵܤ

 ܪ.ଶതതതܤ
ܤ ܪ.

ଵܤ ܪ.
ଶܤ ܪ.

PRIME.H
ଶܤ ܪ.

ଵܤ ܪ.

ܤ ܪ.

ଶܤ ܮ.

Figure 6-4 Schematic with Logic Devices Completely Specified.

The astute student may have also noticed that the inverter has been replaced by a nor-gate. This
kind of subterfuge is common when a circuit is implemented with standard logic chips. Often there
will be unused gates that can take the place of inverters or gates with fewer inputs, and often if the
substitution is made, a lower chip count will result. For example, had we not made the substitution
in Figure 6-4, an inverter (74AC04) would have been required.

If there are unused gates or inverters, it is necessary to connect the inputs to something, usually VCC.
The reason for using VCC is historical. TTL input currents are about 20 times greater when an input
is low than when it is high, so unused inputs were usually tied high to conserve power. With CMOS
it doesn’t matter whether an unused input is tied high or low, just so long as it isn’t changing.

Example 6-1 Modify the schematic in Figure 5-8 so it can be implemented with Advanced CMOS
logic with TTL voltage levels (74ACTxx) parts.

Solution: The schematic from Figure 5-8 is shown below.

This design can be implemented in one of two ways. Both require a 74AC27, triple 3-input nor –
gate. One way uses a 74AC04 and leaves four unused inverters. The other way uses a 74AC02 and
leaves two unused 3-input nor-gates. For this example, we will use the 74AC04. The other
implementation will be left as an exercise.

Since there are no 2-input nor-gates, we use 3-input nor gates with two inputs tied together
instead. With pin numbers, device designators, unused inverters and connections to power, the
schematic is as shown on the next page.

Continued on next page

.ܤ ܮ

 ܮ.ܣ
 ܮ.ܤ
A.H

C.H

F.L

A.H

B.L

C.H

A.L

B.H

 ܪ.ଶതതതܤ
ܤ ܪ.

ଵܤ ܪ.
ଶܤ ܪ.

PRIME.H ܤଵ ܪ.

ܤ ܪ.

ଶܤ ܮ.
1

2

3
4

5

6

8

9
10

13
12

ଶܤ 11 ܪ.
U1D

U1A
U1C

U1B

VCC
14

7

Designator Part
U1 74AC02

Example 6-1 continued.

6.3 Gate Expansion

Occasionally, we encounter designs where there is no available gate with a sufficient number of
inputs. For and-gates and or-gates, it is a simple matter to expand a gate by adding another gate of
the same type. (See Figure 6-5).

Figure 6-5 (a) Constructing a 3-input or-gate from two 2-input or-gates.

(b) Constructing a 7-input and-gate from three 3-input and gates.

A similar technique may be employed to expand a nor-gate by adding one or more or-gates, or to
expand a nand-gate by adding one or more and-gates (Figure 6-6).

Figure 6-6 (a) Constructing a 5-input nor-gate by adding two 2-input or-gates to a 3-input nor-gate.

(b) Constructing a 5-input nand-gate by adding a 3-input and gate to a 3-input nand gate.

There is another option. We can add parentheses to the original logic expression (and perhaps
rearrange terms) so that no sum or product exceeds the number of the available gate inputs. For

(a) (b)

(a) (b)

.ܤ ܮ

.ܣ ܮ
.ܤ ܮ
A.H

F.L

A.H

B.L

C.H

A.L

B.H

3
4
5

6

8
9

1
11
10

2
13

11

1

3

2

4 5 6

9 8

11 10

13 12

U1A

VCC
14

7

U1B

U1C

U2A

U2B U2C

U2D

U2E

U2F

VCC
14

7

Designator Part
U1 74ACT27
U2 74ACT04

example, suppose a circuit needs to generate an active low output, F.L, if either signal A.H matches
B.H or signal C.H matches D.H. Using techniques from Chapter 4, we find:

	ܨ = 	ܤܣ	 + 	 തܤܣ̅ 	+ 	ܦܥ	 + ഥ (6.1)ܦഥܥ	

The straightforward implementation requires a 4-input nor-gate, but suppose, for the sake of
argument, that 4-input nor-gates are not available. If parentheses are added and the design steps
from Chapter 5 are then followed, the 4-input nor-gate is not necessary.

First, we re-write the equation by adding parentheses (a clever rearrangement may save inverters,
but don’t worry about that.)

	ܨ = 	ܤܣ) + (ܦܥ	 	+ 	 തܤܣ̅ 	+ ഥ (6.2)ܦഥܥ	

Now it is clear that F is the sum of three terms, and one of those terms is itself a sum. If we proceed
with the design technique from Chapter 5, we obtain the generic schematic in Figure 6-7. Note that
this schematic can now be implemented with a 3-input nor-gate instead of a 4-input nor gate.
Fortunately, the rearrangement of terms made it possible to eliminate all the inverters as well.

Figure 6-7 Generic Schematic for ܨ	 = 	ܤܣ) + (ܦܥ	 	+ 	 തܤܣ̅ 	+ ഥܦഥܥ	 .

The hardware implementation of this design is left as an exercise.

6.4 Propagation Delay

Up until now, we have assumed that the output of a gate or inverter immediately reflects the state
of its inputs, but that is not true. All real logic devices have propagation delay, the time it takes for a
change in input to be reflected on the output. Propagation delay depends on many things: the
particular device, the logic family, the manufacturer, the temperature, and how well the foundry
was running when the device was produced. Propagation delay also depends on whether the
change in input causes a high-to-low or low-to-high transition on the output. When the output
changes from high to low, the propagation delay is denoted tPHL. When the output changes from low
to high, the propagation delay is denoted tPLH.

Most datasheets for logic devices give minimum, typical and maximum propagation delays, such as
those shown in Figure 6-8. Note that this part (a 74AC02) will run either on 3.3V or 5V and the

AB+CD.H

F.L

A.H

B.H

B.H
C.H
D.H

C.H
D.H

A.H ̅ܣ.L
തܤ .L
 L.̅ܥ
ഥܦ .L

 ഥ.Hܦ̅ܥ

തܤܣ̅ .H

propagation delays are different in each case. Also, this datasheet gives separate propagation
delays for an ambient temperature of 25°C and the full range of -40°C – 85°C.

AC Electrical Characteristics
 VCC TA = 25°C TA = ‒40°C to 85°C

Symbol Parameter (V) CL = 50pF CL = 50pF Units
 Min Typ Max Min Max

tPLH Propagation Delay 3.3
5.0

2.0
1.5

7.0
6.0

9.5
8.0

2.0
1.5

10.0
8.5

ns

tPHL Propagation Delay 3.3
5.0

1.5
1.5

5.5
4.5

8.0
6.5

1.0
1.0

8.5
7.0

ns

Figure 6-8 Excerpt from a 74AC02 Datasheet (Fairchild Semiconductor)

For the purposes of circuit design, we must always assume the worst case propagation delay. For
example, if the device in Figure 6-8 runs on 5V but is not constrained to run at room temperature
(25°C), then we would choose the maximum propagation delay the rightmost column and conclude
that the maximum propagation delays are tPLH = 8.5ns and tPHL = 7.0ns.

Datasheets always indicate what load circuitry is attached to an output when the propagation delay
is measured. This load is designed to mimic other inputs attached to the output under test. Figure
6-8 shows that, for the 74AC02, the load circuitry consists of a 50pF capacitor. (We’ll get to
capacitors in Section 6.5.) For this logic family, it turns out that an output can be connected to more
than ten other inputs before it will exceed this load. The point here is that unless an output is
overloaded, we can rely on the propagation delay data in the datasheet.

So, now that we know how to find the maximum propagation delay through an individual gate, the
next question is: what is the maximum propagation delay through the entire logic circuit? To
answer that, we must be able to compute the propagation delay from each input, through a signal
path to an output. The slowest such path sets the propagation delay for the entire circuit.

Computing the propagation delay through a path is not difficult if the circuit was designed as
described in Chapter 5. It takes three steps: a) calculate the propagation delay if a change on the
input causes the output to become active (asserted), b) calculate the propagation delay if a change
on the input causes the output to become inactive, and c) select the maximum of the two.

To calculate part (a), add the tPHL of each gate with a bubble on its output and tPLH of each gate
without an output bubble. If there is an inverter, add tPHL if it connects to a gate with an input
bubble or tPLH if it connects to a gate without an input bubble. Repeat this procedure for part (b) but
exchange tPHL with tPLH. As an illustration, consider the schematic diagram in Figure 6-4. There are
four signal paths from the inputs to the output:

Path Number Signal Path
1 B2.H→U1C→U1A→PRIME.H
2 B1.H→U1C→U1A→PRIME.H
3 B2.H→U1D→U1B→U1A→PRIME.H
4 B0.H→	U1B→U1A→PRIME.H

Figure 6-9 Signal Paths for the Schematic Shown in Figure 6-4

Clearly path 3 is the longer path because it contains one extra gate, and since the objective is to find
the longest path, we can ignore the others. The propagation delays for each gate in the circuit are
tPLH = 8.5ns and tPHL = 7.0ns because the entire circuit consists of 74AC02 nor-gates. Figure 6-10
shows the calculation of propagation delay using the technique outlined earlier.

Device Description

Activation
Delay

Deactivation
Delay

U1D (inverter not connected to an input bubble) 8.5ns (tPLH) 7.0ns (tPHL)
U1B (gate with output bubble) 7.0ns (tPHL) 8.5ns(tPLH)
U1A (gate with no output bubble) 8.5ns(tPLH) 7.0ns (tPHL)

Total: 24.0ns 22.5ns

Figure 6-10 Calculation of the Activation and Deactivation Propagation Delays for PRIME.H.

The propagation delay for the entire digital logic circuit is the maximum of these two totals, which
in this case is 24ns.

Example 6.2. Find the maximum propagation delay through the circuit in Example 6.1. Assume the
propagation delay through the 74ACT04 is tPHL = 8.5 ns and tPLH = 9.0 ns, and that the propagation
delay through the 74ACT27 is tPHL = 10.0 ns and tPLH = 10.5 ns. The schematic is repeated here for
convenience.

Solution: Clearly the paths that go through the inverters are longer than those that do not, so we
will consider only the paths A.L→U2A→U1C→U1A→F.L and B.H→U2B→U1B→U1A→F.L.
To calculate the delay for the first path, we have:

Device Description

Activation
Delay

Deactivation
Delay

U2A (inverter connected to an input bubble) 8.5ns (tPHL) 9.0ns (tPLH)
U1C (gate with no output bubble) 10.5ns (tPLH) 10.0ns (tPHL)
U1A (gate with output bubble) 10.0ns (tPHL) 10.5ns (tPLH)

Total: 29.0ns 29.5ns

The second path has exactly the same configuration, so it has the same propagation delay. The
maximum propagation delay, then, is the larger of the activation and deactivation delay, which in
this case is 29.5 ns.

.ܤ ܮ

.ܣ ܮ
.ܤ ܮ
A.H

F.L

A.H

B.L

C.H

A.L

B.H

3
4
5

6

8
9

1
11
10

2
13

11

1

3

2

4 5 6

9 8

11 10

13 12

U1A

VCC
14

7

U1B

U1C

U2A

U2B U2C

U2D

U2E

U2F

VCC
14

7

Designator Part
U1 74ACT27
U2 74ACT04

6.5 Sum of Products and Product of Sums

Sometimes, the simplest logic expression is not the one with the smallest propagation delay. If
propagation delay is important, it is often best to express a logical expression as a Sum of Products
(SOP) or a Product of Sums (POS) before implementing it. As the name implies, a sum of products is
a logical expression consisting of a sum of terms, with each term being the product of one or more
(possibly complemented) Boolean variables. For example ̅ܦܥܣ̅+ܥ̅ܤܣ is a sum of products, while the
equivalent (and simpler) expression, ̅(ܦܥ+ܥ̅ܤ)ܣ, is not. A product of sums, on the other hand, is a
logical expression consisting of a product of factors, with each factor being the sum of one or more
variables. As an example, (ܤ+ܣത)(ܦ+ܥ+ܣഥ) is a product of sums, but the expressions (ܤ+ܣത)(ܥ + (തതതതതതതതܦ
and (A+ܤത)(C+ܤതD) are not.

The most important property of SOP and POS expressions is that when they are implemented in
hardware, the longest input/output signal path is limited to an inverter and two gates.

Example 6.3 Implement the logic expression for UNLOCK in Example 4.8 using only nand-gates, nor-
gates and inverters. Then implement the equivalent SOP expression and compare the propagation
delays. Assume KEY1, KEY2 and UNLOCK are active low, BUSINESS_HOURS is active high and that
the propagation delays are as shown below:

Device TPHL TPLH
Inverter 7.0ns 7.5ns
2-input gate 9.0ns 9.5ns
3-input gate 10.0ns 10.5ns

Solution: The expression for UNLOCK from Example 4.8 is repeated here for convenience:

UNLOCK = (KEY1+KEY2)·BUSINESS_HOURS + KEY1·KEY2

Using the technique from Chapter 5, this expression is implemented as shown below:

The two longest paths for this implementation are: KEY1.L→U2A→U1A→U1B→U1D→UNLOCK.L and
KEY2.L→U2B→U1A→U1B→U1D→UNLOCK.L. Both paths contain the same devices in the same
order, so we need analyze only one. Computing the delay for the first path, we find it to be 35ns:

Device

Activation
Delay

Deactivation
Delay

U2A (inverter not connected to an input bubble) 7.5ns (tPLH) 7.0ns (tPHL)
U1A (gate with output bubble) 9.0ns (tPHL) 9.5ns (tPLH)
U1B (gate with no output bubble) 9.5ns (tPLH) 9.0ns (tPHL)
U1D (gate with output bubble) 9.0ns (tPHL) 9.5ns (tPLH)

Total: 35.0ns 35.0ns
 Continued on next page…

UNLOCK.L
 ܮ.1ܻܧܭ

KEY1.L

BUSINESS_HOURS.H
 ܮ.2ܻܧܭ

KEY2.L

U1A
U1B

U1C

U1D

U2A

U2B

U2C

Using property 4.21a, we find the equivalent SOP expression:

UNLOCK = KEY1·BUSINESS_HOURS + KEY2·BUSINESS_HOURS + KEY1·KEY2

The implementation of the SOP expression is shown below:

The longest paths is: BUSINESS_HOURS.H→U2A→U1A→U3A→UNLOCK.L. (The path through U1B is
identical). Computing the delays, we find that the total propagation delay is 27ns:

Device

Activation
Delay

Deactivation
Delay

U2A (inverter connected to an input bubble) 7.0ns (tPHL) 7.5ns (tPLH)
U1C (gate with no output bubble) 9.5ns (tPLH) 9.0ns (tPHL)
U1A (3-input gate with output bubble) 10.0ns (tPHL) 10.5ns (tPLH)

Total: 26.5ns 27.0ns

The SOP implementation has a total propagation delay of 27ns, compared to 35ns in the original
implementation.

Remember that a sum or product may consist of just one term or factor. So, for example, A+BC is
an SOP expression and (A+B)CD is a POS expression. Curiously, ABC is both an SOP and a POS
expression; it is the sum of one product, ABC, and it is the product of three sums, A, B and C.

Every logic expression has at least one equivalent SOP and POS form. Recall from Chapter 4 that any
logic expression can be written as a sum of minterms or as a product of maxterms. These are, by
definition, SOP and POS expressions respectively, but they are usually not the simplest SOP or POS
forms. We will discuss a technique to find the simplest SOP or POS form for any logic expression in
Chapter 7.

6.6 Fan-Out

In Section 6.4, we alluded to the fact that a digital output has a maximum number of inputs that it
can drive. This number of inputs is called the fan-out.

For technologies other than CMOS, fan-out is primarily limited by the ability of an output to source
or sink current from the other inputs. The guaranteed output current of a device is denoted IOH or
IOL in the datasheet, depending on whether the output is high or low. (Current is always considered
to flow into a device, so IOL is positive and IOH is negative.) The maximum current required for an
input is denoted IIH or IIL, depending on whether the input is high or low. The two relationships that
must be maintained between these currents are given by inequalities 6.3 and 6.4.

UNLOCK.L

KEY1.L

BUSINESS_HOURS.H

KEY2.L

U1B

U1C

U3A
U2A

 ܮ.1ܻܧܭ

 ܮ.2ܻܧܭ

U1A

BUSINESS_HOURS.L

ைܫ ≥ −∑ inputs	ூconnectedܫ (6.3)

ைுܫ− ≥ ∑ inputs	ூுconnectedܫ	 (6.4)

These relationships simply mean that the maximum output current must exceed the sum of the
input currents. Consider, for example, the schematic fragment shown in Figure 6-11. The output of
the inverter U1B is connected to four inputs, one on U1 and three on U2.

Figure 6-11 Fan-out Calculation

Suppose U1 is an ON semiconductor 74LS04 and U2 is a Texas Instruments 74LS27. Based on their
datasheets, the input and output current specifications are as shown in Table 6-1.

Table 6-1 Input/Output Current Specifications for Various Devices

Parameter (ON) 74LS04 (TI) 74LS27
IOH –0.4 mA –0.4 mA
IOL 8.0 mA 16.0 mA
IIH (maximum) 20.0 uA 40.0 uA
IIL (maximum) –0.4 mA –1.6 mA

From these specifications we can determine whether or not the output of the inverter (U1B) is
overloaded. Applying Inequality 6.3 we see that

 8mA ≥ −(−1.6mA − 1.6mA − 1.6mA − 0.4mA) = 5.2mA. (6.5)

From this we can infer that the output is not overloaded when it is low. Next we must check that
the output is not overloaded when it’s high. The application of Inequality 6.4 gives us

 0.4mA ≥ 40µA + 40µA + 40µA + 20µA = 0.14mA. (6.6)

From this we can see that the output is likewise not overloaded when it is high.

There is an easier way to verify that none of the outputs in a circuit are overloaded, but it requires
that all the chips be in the same logic family and come from the same manufacturer (or at least have
the same IOH, IOL, IIH and IIL). If this is so, Inequalities 6.3 and 6.4 reduce to

ைܫ ≥ ூܫ݊− (6.7)
and
ைுܫ− ≥ ூுܫ݊ (6.8)

.ܦ ܮ

.ܣ ܮ
.ܤ ܮ

A.H

3
4
5

6

8
9

11
10

1

3

2

4

U2B

U2C

U1A

U1B

.ܥ ܮ

where n is the number of inputs connected to the output. Both inequalities are satisfied if

 ݊ ≤ min ቀ− ூೀಽ
ூಽ

,− ூೀಹ
ூಹ
ቁ (6.9)

The value of n is the fan-out for the logic family, and as long as the number of connections to an
output are less than or equal to n, there is no danger that the output will be overloaded. Since the
number of connections is integral, n is typically rounded down to the next lower integer.

For TTL logic families, any value of n that satisfies Inequality 6.7 also satisfies Inequality 6.8. This
means that Inequality 6.9 can be simplified to:

 ݊ ≤ − ூೀಽ
ூಽ

 . (6.10)

For CMOS logic families, IIL ≈	0	and	IIH ≈	0,	so	the	value	of	n derived from Equation 6.9 is larger than
the number of connections likely to occur in any practical circuit. There is another consideration,
however, and that is the capacitance.

Recall from Chapter 1 that electric potential, or voltage, is created by separating charge, and to get
more voltage it is necessary to separate more charge. The ratio of charge to voltage is constant and
is called capacitance. Capacitance is measured in Farads. (A Farad is, by definition, a Coulomb per
Volt.)

For example, a typical CMOS input has an input capacitance (CIN) of about 4.5pF (picofarads). This
means that if 4.5pC (picocoulombs) of charge is separated from ground and placed on an input, its
voltage will rise by 1V. Likewise, if twice that amount, 9pC, is placed on the input, its voltage will
rise by 2V. Depending on VCC, about 15-30pC of charge must be transferred to or from an input to
make it go high or low, respectively. When multiple inputs are connected together, the effective
capacitance seen by the output is the sum of the input capacitances. The greater that sum, the more
charge that has to be moved per transition, and the longer it takes to do it.

The propagation delay times listed in CMOS datasheets specify a load capacitance, CL, (typically
50pF). If the effective capacitance is less than CL, the propagation delays advertised in the datasheet
will be valid. If not, the circuit will still work, but will be slower. We cannot know exactly how much
slower based only on the information in the datasheet, so if the digital circuit is time-critical, it is
best to maintain the following relationship:

ܥ ≥ ∑ inputs	ூேconnectedܥ (6.11)

(This relationship is an oversimplification. The summation should also include the capacitance for
traces on the printed circuit board, which can be substantial if they are long, but calculating that
capacitance is beyond the scope of this text.)

Again, if a common logic family from the same manufacturer is used, or at least if CIN and CL are the
same, Inequality 6.11 reduces to

ܥ ≥ ூேܥ݊ (6.12)

where n is the number of inputs connected to the output. Solving for n, we get a limit on the
number of inputs that can be connected to an output without compromising its propagation delay:

 ݊ ≤ ಽ
ಿ

 (6.13)

If a design violates the Inequalities 6.3, 6.4 or 6.11, what can be done to reduce the number of
inputs connected to a particular output? The short answer is: make more outputs. This can be
accomplished by duplicating gates or inverters as shown in Figure 6-12.

Figure 6-12 Fan-out (a) Too Many Inputs per Output, (b) Number of Inputs per Output cut in Half.

Exercises

1. Implement the circuit in Example 6-1 using a 74AC27 and a 74AC02.
2. Implement the circuit in Figure 6-7 using Advanced Low Power Schottky.
3. Is (A+ܤത+̅ܥ) an SOP expression? Is it a POS expression? Is it both? Explain.

Bibliography

2

3
1 U1A

VCC
14

7

.ܦ 11 ܮ

12
13 U2D

.ܥ 8 ܮ

9
10 U2C

.ܤ 5 ܮ

6
4 U2B

.ܣ 2 ܮ

3
1 U2A

ഥܦ . 11 ܮ

12
13 U3D

 8 ܮ.̅ܥ

9
10 U3C

തܤ . 5 ܮ

6
4 U3B

.ܣ̅ 2 ܮ

3
1 U3A

2

3
1 U1A

VCC
14

7

.ܦ 11 ܮ

12
13 U2D

.ܥ 8 ܮ

9
10 U2C

.ܤ 5 ܮ

6
4 U2B

.ܣ 2 ܮ

3
1 U2A

ഥܦ . 11 ܮ

12
13 U3D

 8 ܮ.̅ܥ

9
10 U3C

തܤ . 5 ܮ

6
4 U3B

.ܣ̅ 2 ܮ

3
1 U3A

5

6 U1B

VCC
14

7

4

 ܪ.ܺ
 ܪ.ܻ

 ܪ.ܺ
 ܪ.ܻ

 ܪ.ܺ
 ܪ.ܻ

(a) (b)

