

RM-KC51
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

© Copyright 2003 Pumpkin, Inc. last updated on Apr 23, 2004
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– Keil Cx51

 Reference Manual

2 RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

Introduction
This manual is intended for Salvo users who are targeting 8051
family MCUs with Keil's (http://www.keil.com/) Cx51 C compiler.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with Keil's
Cx51 C compiler:

Salvo User Manual
Application Note AN-13
Application Note AN-16

Example Projects
Example Salvo projects for use with Keil's Cx51 C compiler and
Keil's µVision2 IDE can be found in the:

\salvo\ex\ex1\sysi
\salvo\tut\tu1\sysi
\salvo\tut\tu2\sysi
\salvo\tut\tu3\sysi
\salvo\tut\tu4\sysi
\salvo\tut\tu5\sysi
\salvo\tut\tu6\sysi

directories of every Salvo for 8051 family distribution.

Features
Table 1 illustrates important features of Salvo's port to Keil's Cx51
C compiler.

http://www.keil.com/

 Reference Manual

RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

3

general
available distributions Salvo Lite, LE & Pro

for 8051 family
supported targets all 8051 derivatives
header file(s) portkc51.h
other target-specific file(s) port8051.c
project subdirectory name(s) SYSI

salvocfg.h
compiler auto-detected? yes1

libraries
\salvo\lib subdirectory kc51

context switching
method function-based via

OSCtxSw()
_OSLabel() required? no
size of auto variables and

function parameters in tasks unrestricted

memory
memory models supported compact, small and large
memory types for Salvo's global

objects data, idata and xdata

interrupts2
controlled via EA
interrupt status preserved in

critical sections? configuration-dependent

method used configuration-dependent
nesting limit configuration-dependent
alternate methods possible? 3 different methods are used3

debugging
source-level debugging? only in source-code builds

compiler
bitfield packing support? yes
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo Port to Keil's Cx51 C
Compiler

Compiler Optimizations

Incompatible Optimizations
Optimizer level 9 (common block subroutine packing) is
incompatible with OSCtxSw() (present in all Salvo tasks).
However, this is handled automatically4 in portkc51.h, so the
user need not be concerned with it. I.e. optimizer level 9 can be
applied globally to any Salvo source files or source files that call
Salvo services.

 Reference Manual

4 RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

Libraries

Nomenclature
The Salvo libraries for Keil's Cx51 C compiler follow the naming
convention shown in Figure 1.

Salvo library

sfc51siab.lib

type
f: freeware
l: standard

c51/cx51
c51: use with normal Linker (BL51)
cx51: use with Extended Linker (LX51)

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
t: multitasking with delays and events,

tasks can wait with timeouts

variant
a: fns called from anywhere, simultaneously
b: fns called from background only
e: fns called from background or foreground

memory model
c: compact
l: large
s: small

memory type for global Salvo objects
d: data - for targets with 128 bytes RAM
i: idata - for targets with 256 bytes RAM
x: xdata - for targets with external RAM

Figure 1: Salvo Library Nomenclature – Keil's Cx51 C
Compiler

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target (c51/cx51)
No target-specific identifiers are required. However, when using
the BL51 standard linker, the appropriate libraries contain c51 in
their names. When using the LX51 extended linker, the appropriate
libraries contain cx51 in their names. A mismatch will cause
DATA TYPES DIFFERENT warnings.

Memory Model
Keil's Cx51 C compiler's compact, small (Cx51 default) and
large memory models are supported. In library builds, the
memory model applied to all of the source files must match that
used in the library – a mismatch will generate a link-time error
with an obvious message. For source-code builds, the same
memory model must be applied to all of the source files.

 Reference Manual

RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

5

Note Unlike the library configuration and variant options
specified in the salvocfg.h file for a library build, none is
specified for the selected memory model. Therefore particular
attention must be paid to the memory model settings used to build
an application. The memory model is usually specified on a
project-wide basis in the µVision2 IDE.

Memory Type for Global Salvo Objects
Salvo's global objects can be placed anywhere within the 8051's
RAM data space, as shown in Table 2.

memory type code description

d / OSD:
Salvo's global objects will be placed
within the first 128 bytes of RAM (the

data RAM area)

i / OSI:
Salvo's global objects will be placed
within the first 256 bytes of RAM (the

idata RAM area)

x / OSX:
Salvo's global objects will be placed
anywhere within external RAM (the

xdata RAM area)

Table 2: Memory Types for Salvo Libraries – Keil's Cx51
C Compiler

The code required to access Salvo's global objects (e.g. the task
control blocks, or tcbs) will vary in size and speed depending on
where the objects are located.

Since the internal RAM of the 8051 is often used for the system's
stack, function parameters and auto variables, in larger applications
it may be necessary to place Salvo's global objects in external
RAM.

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

 Reference Manual

6 RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

Variant
The Salvo libraries for Keil's Cx51 C compiler implement different
methods of controlling interrupts. Each is designed for minimal
code size. The different variants – and how they control interrupts
– are outlined in Table 3.

variant code description

a / OSA:

Applicable services can be called
from anywhere, i.e. from the

foreground and the background,
simultaneously. Global interrupts will
be disabled (EA = 0) during critical
sections, and restored thereafter.

Unlimited nesting is permitted.
OSPRESERVE_INTERRUPT_MASK is

TRUE.

b / OSB:

Applicable services may only be
called from the background (default).

Global interrupts will be blindly
disabled (EA = 0) during critical

sections. Nesting is not permitted.
OSPRESERVE_INTERRUPT_MASK is

FALSE.

e / OSE:

Applicable services may only be
called from everywhere, i.e. from the
foreground or the background, but

not simultaneously.. Global interrupts
will be disabled (EA = 0) during
critical sections, and restored

thereafter. Nesting is not permitted.
OSPRESERVE_INTERRUPT_MASK is

TRUE.

Table 3: Variants for Salvo Libraries – Keil's Cx51 C
Compiler

If your application does not call any Salvo services from within
interrupts, use the b variant. If you wish to call applicable services
from within interrupts or from the background level – but never
simultaneously and without any nested interrupts – use the e
variant. If you don't want any restrictions placed on how you call
Salvo services, use the a variant. In each case, you must call the
services that you use from the correct place in your application, or
either the linker will generate an error or your application will fail
during runtime.

The a-variant libraries are the most versatile, but they are also the
largest because of the on-stack saving of IE and the reentrant
keyword that is applied to appropriate Salvo services. The
e-variant libraries are smaller because reentrancy is not used. The
b-variant libraries are smaller still.

 Reference Manual

RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

7

See the OSCALL_OSXYZ configuration parameters for more
information on calling Salvo services from interrupts.

Build Settings
Salvo's libraries for Keil's Cx51 C compiler are built using the
default settings outlined in the Libraries chapter of the Salvo User
Manual. Target-specific settings and overrides are listed in Table 4.

compiled limits
max. number of tasks 3
max. number of events 5
max. number of event flags5 1
max. number of message

queues6 1

target-specific settings
delay sizes 8 bits
idling hook enabled
interrupt-enable bits during

critical sections EA = 0

message pointers can point to idata
Salvo objects as per library's memory type
system tick counter available, 32 bits
task priorities enabled
watchdog timer not affected

Table 4: Build Settings and Overrides for Salvo Libraries
for Keil's Cx51 C Compiler

Note The compiled limits for tasks, events, etc. in Salvo libraries
can be overridden to be less (all Salvo distributions) or more (all
Salvo distributions except Salvo Lite) than the library default. See
the Libraries chapter of the Salvo User Manual for more
information.

Available Libraries
There are 540 Salvo libraries for Keil's Cx51 C compiler. 270 are
for use with the BL51 linker, and 270 for use with the LX51 linker.
Each Salvo for 8051 family distribution contains the Salvo
libraries of the lesser distributions beneath it.

 Reference Manual

8 RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
different Salvo for 8051 distributions targeting a generic 8051.

Note When overriding the default number of tasks, events, etc. in
a Salvo library build, OSTASKS and OSEVENTS (respectively) must
also be defined in the project's salvocfg.h. If left undefined, the
default values (see Table 4) will be used.

Salvo Lite Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_GLOBALS OSD
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSB

Listing 1: Example salvocfg.h for Library Build Using
sfc51sdab.lib

Salvo LE & Pro Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_GLOBALS OSD
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSB

Listing 2: Example salvocfg.h for Library Build Using
slc51sdab.lib

Salvo Pro Source-Code Build
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSLOC_ALL data
#define OSTASKS 3

Listing 3: Example salvocfg.h for Source-Code Build

 Reference Manual

RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

9

Performance

Memory Usage
tutorial memory usage7 total ROM8 total RAM9

tu1lite 151 23
tu2lite 275 23
tu3lite 305 25
tu4lite 674 35
tu5lite 1026 52
tu6lite 1278 57
tu6pro10 1159 53

Table 5: ROM and RAM requirements for Salvo
Applications built with Keil's Cx51 C Compiler

Special Considerations

8051 Target Compatibility
An extraordinary variety of 8051-type MCUs are available. Many
have extended memory ranges beyond the typical data, idata and
xdata spaces.

Salvo is source-code compatible with all of the 8051 family
devices that Keil's Cx51 C compiler supports.

Salvo's libraries are compatible with all 8051 variants that have
RAM in the data, idata or xdata spaces.

Alternate Memory Mappings for Source-Code Builds
To place Salvo's global objects in a different RAM space in a
source-code build, redefine OSLOC_ALL (default: idata) or
individual OSLOC_XYZ configuration options.

To change what Salvo's message pointers can point to, redefine
OSMESSAGE_TYPE (default: idata).

Memory Map Issues Involving RAM Address 0x0000
Certain Cx51 memory attributes (e.g. the xdata space) include the
ability to place global variables at an address of 0x0000. If the
global Salvo object placed at address 0x0000 is pointed to

 Reference Manual

10 RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

anywhere in the Salvo code, Salvo's runtime error checking will
interpret the pointer as a NULL pointer and will reject the
operation (e.g. creating an event flag whose event flag control
block is located at 0x0000). This can cause confusion, as code that
locates some or all of Salvo's global objects in one memory space
(e.g. the data space) may not work correctly when the memory
space is changed (e.g. to xdata) because of a difference in the
valid address ranges in the two data spaces.

All of Salvo's global objects are located in Salvo's mem.c. The
objects are arranged in mem.c such that the first object, OScTcbP,
can be located at a memory address of 0x0000 without causing any
runtime problems.11 No other Salvo global objects may be located
at address 0x0000.

Effect of Random Linktime Global Object Arrangement
As an example, Figure 2 illustrates the memory locations for
Salvo's global objects for a Salvo project built with OSLOC_ALL set
to xdata in the project's salvocfg.h. By default, the BL51 linker
arranges the global objects as it sees fit, not necessarily in the
order in which they are declared in the source code:

 [SNIP]
 ------- MODULE MEM
 C:0000H SYMBOL _ICE_DUMMY_
 X:0000H PUBLIC OSefcbArea
 X:0004H PUBLIC OSecbArea
 X:000EH PUBLIC OSdelayQP
 X:0010H PUBLIC OStcbArea
 X:0022H PUBLIC OSsigQinP
 X:0024H PUBLIC OSsigQoutP
 X:0026H PUBLIC OSeligQP
 X:0028H PUBLIC OSlostTicks
 X:0029H PUBLIC OScTcbP
 ------- ENDMOD MEM
 [SNIP]

Figure 2: Salvo's Global Objects Located in the xdata
Memory Space in Random Order

In Figure 2, the first of Salvo's event flag control blocks (efcbs) in
the OSefcbArea array is located at 0x0000 (equivalent to NULL
when used as a pointer). The project compiles successfully, but
does not operate correctly with regard to the first event flag (at
OSEFCBP(1)). This is because Salvo's event flag services, which
take a pointer to the efcb as a parameter, reject a NULL pointer as
being invalid, and return an error code.

 Reference Manual

RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

11

Solution #1: Keep Salvo's Global Objects in Order
By selecting Keep variables in order under µVision's Project →
Options → C51,12 Salvo's global objects in mem.c will be
arranged in the intended order, with OScTcbP first:

 [SNIP]
 ------- MODULE MEM
 C:0000H SYMBOL _ICE_DUMMY_
 X:0000H PUBLIC OScTcbP
 X:0002H PUBLIC OStcbArea
 X:0014H PUBLIC OSeligQP
 X:0016H PUBLIC OSecbArea
 X:0020H PUBLIC OSsigQinP
 X:0022H PUBLIC OSsigQoutP
 X:0024H PUBLIC OSefcbArea
 X:0028H PUBLIC OSdelayQP
 X:002AH PUBLIC OSlostTicks
 ------- ENDMOD MEM
 [SNIP]

Figure 3: Salvo's Global Objects Located in the xdata
Memory Space in Specified Order

By ensuring that OScTcbP is at 0x0000, all issues with NULL
pointers and Salvo's global objects are avoided.

Solution #2: Specify xdata Memory Range(s)
By selecting Off-chip Xdata memory Start and Size under
µVision's Project → Options → Target, one can avoid placing
any of Salvo's global objects at 0x000. For example, by starting the
xdata space at 0x0004, we get the memory map below:

 [SNIP]
 ------- MODULE MEM
 C:0000H SYMBOL _ICE_DUMMY_
 X:0004H PUBLIC OSefcbArea
 X:0008H PUBLIC OSecbArea
 X:0012H PUBLIC OSdelayQP
 X:0014H PUBLIC OStcbArea
 X:0026H PUBLIC OSsigQinP
 X:0028H PUBLIC OSsigQoutP
 X:002AH PUBLIC OSeligQP
 X:002CH PUBLIC OSlostTicks
 X:002DH PUBLIC OScTcbP
 ------- ENDMOD MEM
 [SNIP]

Figure 4: Salvo's Global Objects Located in the xdata
Memory Space with a Specified Non-zero Start Address

Once again, since there is no Salvo global object at 0x0000, all
issues with NULL pointers and Salvo's global objects are avoided.

 Reference Manual

12 RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

Solution #3: Reserving xdata Space
By reserving some RAM in the xdata space via the DS assembly-
language directive, you can ensure that none of Salvo's global
objects are placed at 0x0000:

 xseg at 0
 XNULL: DS 0x10

Figure 5: Assembly-Language Directives to Avoid
placement of any Salvo Objects at 0x0000

By placing the snippet in Figure 5 in an assembly-language module
that is built as part of the project, an absolute xdata segment that's
16 bytes long will be created, and the linker will place it at address
xdata:0000. Other relocatable segments (e.g. the segment for
Salvo's mem.c) will be located after it, thus guaranteeing that none
of Salvo's global objects are located at 0x0000 and all issues with
NULL pointers and Salvo's global objects are avoided.

Bank Switching
Salvo is compatible with Cx51's code banking (also called bank
switching), with certain restrictions.

Overview
The dispatching of tasks via the Salvo scheduler and context-
switcher is likely to be incompatible with the bank switching
implemented via Cx51's L51_BANK.A51 assembly-language
module. Therefore the Salvo scheduler, context-switcher and tasks
themselves must be located in the common (code) area.

Note To maximize the available space in the common area, it's
recommended that user modules containing Salvo tasks contain no
other user functions.

In all cases, user functions called by Salvo tasks are not restricted
in terms of their code locations – they can be in the common area,
or in banked areas.

Recommended Practice
It is recommended that all Salvo modules, as well as all modules
containing Salvo tasks, be placed in the common area. This will
maximize Salvo's performance by avoiding the bank-switching
overhead that would occur if any of Salvo's user services or

 Reference Manual

RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

13

internal services are located in a bank. Because of Salvo's small
ROM footprint, many applications can accommodate Salvo and
Salvo tasks in the common area.

Note The BL51/Lx51 linker/locator always places program
sections of runtime libraries in the common area. Therefore
applications built with Salvo libraries will automatically have the
Salvo code placed in the common area. In this case, the user must
also ensure that the Salvo tasks themselves are placed in the
common area.

Alternative Practice
If space in the common area is at a premium, one possible
alternative for Salvo Pro users is to do a source-code build, and
locate all of Salvo's source modules except those containing the
scheduler and the context-switcher in a banked area. Salvo tasks
would still need to be located in the common area.

Preserving Interrupt Masks
When OSPRESERVE_INTERRUPT_MASK is set to TRUE (the default),
Salvo initially saves and later restores the register IE on the stack
as part of disabling interrupts in critical sections. This has a
substantial impact on Salvo code size – therefore it should only be
used in source-code builds if / when you intend to call one or more
Salvo services from the foreground / interrupt level.

Multiple Callgraphs, Reentrancy, etc.
Keil's Cx51 C compiler does not pass parameters and auto
variables on the stack unless a function is declared as reentrant.
Salvo services that can be called from the foreground / interrupt
level are made reentrant by defining the associated OSCALL_OSXYZ
configuration option to be OSFROM_ANYWHERE.

1 This is done automatically through the __C51__ and __CX51__ symbols

defined by the compiler.
2 See Variant.
3 OSEnter|LeaveCritical() can be re-written to control particular interrupt

bits when OSPRESERVE_INTERRUPT_MASK is TRUE.

 Reference Manual

14 RM-KC51 Salvo Compiler Reference Manual – Keil Cx51

4 Level 9 optimizations are automatically disabled in any source module that

contains a Salvo context switch when OSPRESERVE_INTERRUPT_MASK is
TRUE.

5 Each event flag has RAM allocated to its own event flag control block.
6 Each message queue has RAM allocated to its own message queue control

block.
7 Salvo v3.2.0 with Cx51 v7.00A
8 In bytes, as reported under Program Size: data=dd xdata=xx code=cc.
9 In bytes, idata, as reported under Program Size: data=dd xdata=xx

code=cc.
10 Salvo Pro build differs slightly from Salvo Lite build due to configuration –

see tutorial's salvocfg.h.
11 OScTcbP is never referenced by pointer in the Salvo code.
12 The command-line control directive ORDER has the same effect.

	Salvo Compiler Reference Manual – Keil Cx51
	Introduction
	Related Documents
	Example Projects
	Features
	Compiler Optimizations
	Incompatible Optimizations

	Libraries
	Nomenclature
	Type
	Target (c51/cx51)
	Memory Model
	Memory Type for Global Salvo Objects
	Configuration
	Variant
	Build Settings
	Available Libraries

	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build

	Performance
	Memory Usage

	Special Considerations
	8051 Target Compatibility
	Alternate Memory Mappings for Source-Code Builds

	Memory Map Issues Involving RAM Address 0x0000
	Effect of Random Linktime Global Object Arrangement
	Solution #1: Keep Salvo's Global Objects in Order
	Solution #2: Specify xdata Memory Range(s)
	Solution #3: Reserving xdata Space

	Bank Switching
	Overview
	Recommended Practice
	Alternative Practice

	Preserving Interrupt Masks
	Multiple Callgraphs, Reentrancy, etc.

