

Laboratory Schedule

Week	Date	Exp#	Experiment
1	5-Jan		Check into Lab; Orientation and Safety Precautions
2	12-Jan	1	Measurements and Significant Figures
3	19-Jan		<i>Martin Luther King Holiday</i>
4	26-Jan	2	The Use of Chemical Balances
5	2-Feb	3	Use of Volumetric Ware and the Determination of Density
6	9-Feb	5	Separation and Analysis
7	16-Feb		<i>Presidents' Day Holiday</i>
8	23-Feb	16	Use of Melting Points in the Identification of Organic Compounds
9	2-Mar		<i>Spring Break</i>
10	9-Mar	18	Hydrocarbons
11	16-Mar	22	Synthesis of Aspirin and other Esters
12	23-Mar	23	Identifying Functional Groups in Unknowns
13	30-Mar	32	Vitamin C Content of Foods
14	6-Apr	34	Extraction of DNA from Wheat Germ
15	13-Apr		Check out of lab

Laboratory Procedures:

1. Students must attend the lab section for which they are registered. No “make-up” labs are possible.
2. Students are expected to read the lab ahead of time and understand the lab activities to be done *before* they come to lab. Each experiment has a “pre-lab review” that must be completed and *submitted through Canvas at least one hour before the beginning of the lab period*.
3. Some experiments are to be performed on an individual basis (no partners). Other experiments will be done as a team with your lab partner, as directed by your lab instructor. When given an unknown, each student will test their own individual unknown and submit their analysis of their own unknown.
4. *Completed lab reports are due prior to the beginning of the next scheduled lab period* following completion of the experiment. Submit each lab report electronically as single-file, multiple-page image through Canvas by the deadline posted for each activity. This is normally at least one hour before the next laboratory period.
5. You must bring your laboratory textbook (or appropriate sheets) to each laboratory session. You may utilize an electronic device, but it must support hand-written input on the screen.
6. Before leaving lab, review your data with your lab instructor and get his/her initials on your report.
7. **SAFETY:**
 - a. We want you to be safe in lab. Protective eye glasses, goggles, or prescription eye glasses (subject to instructor approval) must be worn at all times in the lab. Have them with you the first day of lab. All instructions given about safety precautions must be followed. Violation of any of these policies can result in expulsion from the lab.
 - b. It is also important to wear clothing in lab that adds extra protection.

Each student must wear their own lab coat during lab.
- c. Students must wear long pants and closed-toe shoes. Long hair must be drawn back (e.g. braids, ponytail, bun) such that it does not hang down over the lab bench. Students should also avoid wearing bulky, oversized sleeves that might drag across the lab bench. When needed in the lab, the chemistry department will supply disposable gloves.

Labs should be a fun, enjoyable experience where you can discover science in a safe, hands-on environment. By following these rules and the instructions of your instructor, this should be the most enjoyable and memorable aspect of our chemistry course.