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To assess developmental differences in evidence evaluation skills, 77 second- and third- 

grade students, 85 sixth- and seventh-grade students, 36 non-college-educated adults, 

and 40 college students were presented with four data sets depicting plants grown by 

each of four people. The data sets presented a perfect positive or zero correlation 

between plant health and the presence or absence of one variable, believed by partici- 

pants to have a causal influence on growing healthy plants, or another, believed to have 

no causal influence, In each of three missing data conditions, the data sets depicted 

instances in which the status of the variable, outcome, or both were unknown in addition 

to the contingency data. After each data set was presented, participants judged (and 

justified) the causal status of the vanable. Although demonstrating a basic competence, 

the two groups of children were more strongly influenced by prior beliefs and missing 

data than were the two adult groups. There were also age or educational differences in 

participants’ tendency to justify judgments on the basis of the contingency data. The 

implications of the results for conceptualizing the continuity or discontinuity of chil- 

dren’s, adults’, and scientists’ evidence evaluation skills are discussed. 

Like other metaphors in science, likening the child to a scientist is a power- 
ful image that informs researchers, theorists, and practitioners alike. The 
child-as-scientist metaphor is typically taken to mean that children and 
scientists are similar in the manner by which they acquire knowledge about 
the world (Gruber, 1973; Ross, 1981; Rosser, 1994). The image associated 
with the metaphor is of children, like scientists, forming, testing, and revising 
causal theories about the world. Through such processes, it is supposed that 
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children and scientists acquire an increasingly adequate understanding of 
the world. 

The child-as-scientist metaphor has motivated a wide range of research 
studies that assess whether or not there is a continuity between how children 
and scientists acquire knowledge. Research has generally supported the 
view of a continuity between children and scientists in that both form and 
revise theories of the world (Brewer & Samarapungavan, 1991; Wellman & 
Gelman, 1992). Children form and revise intuitive theories, defined as inte- 
grated networks of explanatory concepts and causal beliefs regarding phe- 
nomena in specific domains such as psychology (Gopnik & Astington, 1988; 
Gopnik & Wellman, 1992), biology (Carey, 1985b; Gelman & Markman, 
1986), and physics (Amsel, Goodman, Savoie, & Clark, 1996; Smith, Carey, 
& Wiser, 1985), These intuitive theories allegedly have the same explanatory 
and predictive unctions for children that formal theories have for scientists, 
thereby allowing children and scientists alike to go beyond mere observa- 
tions and descriptions of phenomena, to explanations and predictions of 
them as well (Carey 1985a; Wellman & Gelman, 1991). 

Although this research converges on the view of children as theoretical 
scientists who explain and predict phenomena on the basis of intuitive 
theories, research addressing their status as expe~mental scientists is less 
conclusive, Children’s status as experimental scientists has been tested, 
among other ways, by their ability to evaluate evidence from the world and 
its bearing on hypotheses about the world. Evidence is defined as informa- 
tion that serves to confirm or disconfirm hypotheses (Hemple, 1961). In 
many of these studies, children evaluate evidence bearing on causal hy- 
potheses (e.g., whether a variable is causally or noncausally related to an 
outcome), and their status as experimental scientists is assessed by whether 
the children judge causal hypotheses on the basis of evidentially relevant 
information alone, without any influence of evidentially irrelevant informa- 
tion. For example, Kuhn, Amsel, and O’Loughlin (1988, Studies la and lb) 
assessed whether children, adolescents, and adults evaluate multiple causal 
hypotheses (e.g., four variables presented as possible causes of an outcome) 
on the basis of sequentially presented instances of contingency data (e.g., 
the association between each variable and the outcome) alone, ignoring 
their prior beliefs about the causal status of the variables. Kuhn et al. 
demonstrated that children, unlike adults, often justified their judgments of 
the causal status of variables on the basis of their prior beliefs of the causal 
or noncausal status of the variables (belief-based judgments) and not the 
contingency data (evidence-based judgments). 

Kuhn et al. (1988) also found that children continued to be inappropri- 
ately influenced by their prior beliefs despite being specifically requested to 
evaluate the causal hypotheses on the basis of the contingency data. Al- 
though more evidence-based judgments were made in such circumstances, 
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children, adolescents, and even some adults interpreted the contingency 
data in a biased manner. For example, they would interpret contingency 
data showing that a variable and outcome are independent of each other as 
confirming their prior belief that the variable was causal by pointing to only 
those instances in which the variable and outcome are both present. 

Kuhn et al. (1988) also noted that children confronted by data that were 
inconsistent with their prior beliefs would sometimes articulate a new, often 
incredible, belief to explain the contingency data. For example, one ninth- 
grade boy who initially believed that getting colds or no colds was unrelated 
to the type of relish (mustard or catsup) eaten was shown that children who 
ate mustard got few colds, whereas children who ate catsup got lots of colds. 
The ninth grader judged that the type of relish was causal but justified the 
judgment by claiming that mustard keeps people healthier than catsup 
because it has more ingredients (a belief that was refined in a variety of 
ways over the course of the interview). Although the child’s judgment of the 
causal status of the variable was consistent with the data, his justification of 
the judgment was based on a (perhaps newly formed) belief about how the 
variable produces the outcome. Kuhn et al. considered such cases as beliefs 
mediating the interpretation of the contingency data because the beliefs 
provided participants with an explanation of what would have been other- 
wise inconsistent data. 

Thus, Kuhn et al. (1988) suggested that children fail to evaluate evidence 
independently of their causal and noncausal beliefs because their beliefs 
influenced and/or mediated if, when, and how the evidence was evaluated. 
That is, instead of evaluating causal hypotheses solely on the basis of con- 
tingency data alone (i.e., what was described as reasoning about a theory 
and coordinating it with evidence), children evaluated the evidence in light 
of available (prior or newly formed) causal and noncausal beliefs (i.e., what 
was described as reasoning with a theory and merging it with information 
from the world). More recent research has suggested that with sufficient 
practice, children are capable of evaluating evidence independently of be- 
liefs. Microgenetic studies have revealed that, over a few short weeks, chil- 
dren become increasingly likely to correctly interpret evidence and its 
bearing on causal h~otheses (Kuhn, 1995; Kuhn, Schauble, & Mila-Garcia, 
1992; Schauble, 1990). However, children have more difficulty evaluating 
evidence than adults, whose evidence evaluation skills showed more rapid 
improvement with practice than children’s (Kuhn, 1995; Schauble & Glaser, 
1990). 

The conclusion that children are poor experimental scientists because 
their evaluation of causal hypotheses tend to be influenced and/or mediated 
by available beliefs has been challenged on methodological and normative 
grounds. Methodologically, young children have been shown to interpret 
correctly contingency evidence and its bearing on causal hypotheses inde- 
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pendently of their beliefs if they are given a less cognitively demanding 
evidence evaluation task than the one used by Kuhn et al. (1988, Bullock, 
1991; Bullock, Ziegler, & Martin, 1992; Ruffman, Perner, Olson, & Doherty, 
1993; Sodian, Zaitchik, & Carey, 1991). On these tasks, children interpreted 
contingency evidence that was presented all together (rather than Kuhn et 
al.‘s procedure to present the data sequentially) and then judged the causal 
status of typically one or two variables (in contrast to judging the causal 
status of four or more in Kuhn et al.). But perhaps the most important 
methodological innovation in these studies has been the assessment of 
children’s judgments of the causal status of variables separately from their 
justifications of those judgments. Kuhn et al. assessed ~hildren’s judgments 
of the variables together with their corresponding justification and coded 
each judgment-justification pair as being either belief-based or evidence- 
based. However, Bullock (1991; Bullock et al., 1992) found that on a simpli- 
fied evidence evaluation task, a majority of second and third graders 
ignored their prior beliefs and correctly judged the causal status of a vari- 
able on the basis of contingency data. That is, children’s judgments of the 
variable were consistent with the contingency (covariation and noncovaria- 
tion) data and inconsistent with their prior belief regarding the variable. 
However, only a minority of the same children justified their judgments on 
the basis of the data. Bullock et al. concluded that it was children’s tendency 
to justify judgments on the basis of data rather than their ~ndamental 
reasoning processes that change with age and education on evidence evalu- 
ation tasks. 

Ruffman et al. (1993, Study 1) also used a simplified task to assess Kuhn 
et al.% (1988) claim that children fail to evaluate evidence independently of 
prior beliefs. They found that .5-year-olds correctly judged that two protago- 
nists would arrive at different conclusions about the causal status of the 
same variable if each protagonist witnessed a different association between 
the variable and outcome. Moreover, because only the first protagonist was 
presented as witnessing the “true” data, children were able to correctly 
interpret the “false” data for the second protagonist despite the data con- 
flicting with the hypothesis that the children believed to be true. Finally, 
Ruffman et al. (Study 3) found that although a large majority of young 
children correctly judged the “true” and “false” data, only a small minority 
of them justified their judgments about the causal status of variables on the 
basis of the data. They concluded that although children do not justify their 
judgments about a causal hypothesis on the basis of evidence, they are 
nonetheless able to correctly evaluate evidence and its bearing on hypothe- 
ses independently of their beliefs. 

Bullock et al, (1992) and Ruffman et al. (1993) suggested that Kuhn et 
al.% (1988) assessment of children’s justifications is not only unnecessary 
but also potentially misleading because children do judge the causal status 
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of variables consistently with contingency data even though they may not 
refer to the data when justifying their judgments. However, children’s belief- 
based justifi~tions of otherwise consistent inte~retations of the data were 
the basis for Kuhn et al. to claim that the children’s judgments were medi- 
ated by beliefs that serve to explain the data. From Kuhn et al.% perspective, 
Ruffman et al. and Bullock et al. may have merely demonstrated that 
children explain novel data by forming new beliefs, rather than demonstrat- 
ing that they evaluate evidence independently of their beliefs. 

Other researchers have challenged Kuhn et al.‘s (1988) assertion that 
causal hypotheses ought to be evaluated on the basis of contingency data 
alone, independently of beliefs. For example, Koslowski, Okagaki, Lorenz, 
and Umbach (1989) assessed the kinds of information that influence sixth- 
grade, ninth-grade, and college students’ evaluation of causal hypotheses. 
Koslowski et al. varied whether or not students were told of a plausible 
mechanism explaining how a variable produces an outcome (e.g., how im- 
purities in a gas additive can lower a car’s gas mileage) in addition to the 
presence or absence of covariation data about the variable and outcome 
(e.g., how all cars given the gas additive had lower gas mileage than cars not 
given the additive) among other types of information. They found that all 
students were more certain of the causal status of a variable when it was 
described as covarying than not covarying with the outcome and that their 
causal certainty was greater when a plausible causal mechanism was given 
than when it was not given. This latter effect was absent for sixth graders 
when judging the causal status of variables covarying with the outcome. 
These children were equally (and strongly) certain of the causal status of a 
variable whether or not they were given an explanation of how it influences 
the outcome. The authors suggested that sixth graders may have assumed 
that a plausible causal mechanism exists that explains the connection be- 
tween the variable and outcome, even though they were not directly told 
about such a mechanism. 

Koslowski et al. (1989) concluded that children, like adults, treat both 
contingency data and mechanism information as evidence when evaluating 
causal hypotheses. Moreover, they cited philosophers of science who made 
the same claim about how practicing scientists actually evaluate causal 
hypotheses. As such, they argued that Kuhn et al. (1988) were wrong in 
asserting that children are poor experimental scientists because their evalu- 
ation of evidence was influenced or mediated by their beliefs. However, 
Kuhn et al. (p. 4) never supposed that they were studying how practicing 
scientists actually evaluate causal hypotheses. Rather, they claimed to be 
studying whether children would respond like scientists to a challenge re- 
garding why one causal hypothesis was accepted over others. Kuhn et al. 
supposed that scientists would respond by reflecting on and carefully distin- 
guishing between representations of theories (i.e., their causal beliefs and 
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explanatory concepts) on the one hand and the evidence (i.e., information 
confirming or disconfirming hypotheses) on the other. It was argued that a 
failure to reflect on and carefully distinguish between representations of 
theory and evidence would lead to a melding of the two into a single account 
of “the way things are” (Kuhn et al., p. 221). Koslowski’s sixth-grade stu- 
dents appear to have experienced such a melding of theory and evidence. 
When presented with data of a covariation between a variable and outcome, 
the sixth-grade students simply assumed the existence of a causal mecha- 
nism connecting the variable to the outcome. That the covariation between 
a variable and outcome gave only children license to infer a causal mecha- 
nism between them goes to the heart of Kuhn et al.‘s claim that children, 
unlike college students and scientists, merge representations of theory and 
evidence rather than seeking to distinguish between them. 

These critiques of Bullock et al. (1992), Koslowski et al. (1989), and 
Ruffman et al. (1993) may be taken to suggest that even on simplified 
evidence evaluation tasks, there may be developmental changes in how 
children interpret contingency data and its bearing on causal hypotheses. 
Although adults may interpret covariation data and its bearing on causal 
hypotheses independently of their prior beliefs, children may not and in- 
stead interpret such data in light of available (prior or newly formed) beliefs 
about the causal connection between variable and outcome. In the study 
presented here, children were assessed for their ability to evaluate contin- 
gency data bearing on a causal hypothesis independently of (i.e., not influ- 
enced or mediated by) causal or noncausal beliefs regarding variables. 

The task employed in this study incorporates three methodological inno- 
vations on Kuhn et al’s (1988) procedure to better assess the development 
of children’s evidence evaluation skills. First and foremost, like Bullock et 
al. (1992) and Ruffman et al. (1993), an evidence evaluation task was used 
that was less cognitively demanding than the one used by Kuhn et al. In the 
task presented here, participants were assessed for their judgments and 
justifications regarding the causal status of each of two variables that ap- 
peared in each of two data sets. Each data set presented perfect covariation 
or noncovariation evidence for one variable believed to causally related to 
an outcome and one variable believed to be noncausally related. Thus, 
children were presented with four data sets but assessed the influence of 
only one variable in each data set. Moreover, the instances in each data set 
were presented all at once rather than sequentially. We presumed that 
children’s ability to correctly interpret the evidence and its bearing on 
causal hypotheses would be enhanced by reducing the number of variables 
reasoned about and presenting the instances of contingency data all at once 
rather than sequentially. 

Second, like Bullock et al. (1992), children’s causal judgments were as- 
sessed independently of their justifications This is in contrast with Kuhn et 
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al. (1988), for whom judgments and justifications were coded together. As a 
result of coding the data in such a manner, children in the study presented 
here may be shown to make judgments of the causal status of variables that 
are consistent with the contingency data but fail to justify such judgments 
by reference to the data. Third, like Koslowski et al. (1989) participants’ 
judgments were assessed on a scale reflecting their certainty that the vari- 
able was causal, not causal, or neither causal nor noncausal (see the Meth- 
ods section). Such a coding technique was thought to be a more realistic and 
sensitive measure of participants’ judgments of the causal status of a vari- 
able than would be having children make forced-choice causal or noncausal 
judgments (Acredolo & O’Conner, 1991). 

The study presented here employs three ways of measuring whether or 
not participants’ evaluation of evidence was influenced or mediated by their 
available beliefs. First, they were assessed for whether their judgments of the 
causal status of variables reflected the influence of prior causal or noncausal 
beliefs. Although Bullock et al. (1992) found no such influence in 8 and 
9-year-olds, the study presented here corrects what are taken to be a number 
of features of Bullock et al.3 study that may have led to an overestimation 
of children’s evidence evaluation skills. Bullock et al. presented the covaria- 
tion evidence to participants grouped according to outcome (e.g.. all the 
positive outcome instances were grouped together on one side of a page and 
the negative outcome instances on the other). Such an organization may 
have unduly highlighted the covariation or noncovariation structure of the 
data for children. In addition, children’s prior beliefs regarding the causal or 
noncausal status of variables were not assessed. On the face of it, children’s 
prior beliefs were probably held without the conviction arising from knowl- 
edge of the task domain. It is likely that children had only a limited under- 
standing of two task domains used by Bullock et al.: the aerodynamics of 
flying a kite and the design of lanterns. Thus, Bullock at al.3 conclusion that 
children correctly evaluate contingency evidence independently of prior 
beliefs may not generalize to cases where there is no highli~ting of the 
contingency structure of a data set and children’s causal and noncausal 
beliefs are held with a strong conviction. 

In the study presented here, children and adults were selected for having 
strongly held prior causal and noncausal beliefs regarding the influence of 
variables on an outcome. Pilot research indicated that children and adults 
alike strongly believe that growing healthy plants requires giving it sun and 
can cite a causal mechanism (albeit not always photosynthesis) connecting 
the cause to the effect. Children and adults also strongly believe that a 
“charm,” represented by a four-leaf clover, makes no difference in growing 
healthy plants because there is no causal mechanism connecting the vari- 
able to the outcome. To ensure that the same prior beliefs regarding the 
variables were held by all participants, each was initially interviewed about 
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their beliefs. On a subsequent interview, each subject was presented with 
four data sets, representing plants grown by four different people. Each data 
set contained at least four instances of a plant (which was either healthy or 
sick) with each instance associated with either the presence or absence of 
sunshine or a clover. The instances were presented all together and there 
was no additional organization or grouping of the contingency data. On the 
presentation of each data set, participants were asked to make judgments of 
the causal status of the variable. 

The second measure of the influence or mediation of belief on children’s 
evaluation of evidence was their justifications. As previously noted, justifi- 
cation data were used by Kuhn et al. (1988) to identify children who failed 
to evaluate evidence independently of beliefs. However, Ruffman et al. 
(1993) and Bullock et al. (1992) argued that justification data were mislead- 
ing about children’s true evidence evaluation skills, a concern echoed by 
others (Sodian et al., 1991). As a result, a third measure was developed to 
augment the other two as a means to assess whether or not children inter- 
pret evidence independently of prior beliefs. If children’s evaluation of 
evidentially relevant contingency data is influenced or mediated by beliefs, 
then those beliefs may influence or mediate their evaluation of other, evi- 
dentially irrelevant data. For example, children’s available beliefs may influ- 
ence or mediate their evaluation of instances of missing data, the presence 
of which neither confirms nor disconfirms a causal hypothesis. 

In the study presented here, participants in each age group were assigned 
to either the control condition and presented with contingency data in each 
of the four data sets or to one of three missing data conditions and given 
instances of missing data in addition to the contingency data in each of the 
four data sets. Participants assigned to a missing data condition were told 
that the person who grew the plants forgot the status of the variable (e.g., 
whether the sun or charm was present or absent), and/or the outcome (e.g., 
whether the plant was healthy or sick) on the “missing data” instances, but 
correctly remembered the status of the variable and outcomes on the other 
instances. There were a total of three missing data conditions that varied 
whether the status of the variable, outcome, or both variable and outcome 
were unknown. 

If children evaluate evidence independently of prior beliefs, then their 
judgments of the causal status of variables in control and missing data 
conditions shotrId be no different from each other. Parti~ip~ts in the miss- 
ing data conditions would judge the causal status of variables on the basis 
of the evidentially relevant contingency data alone, ignoring the evidentially 
irrelevant missing data. However, children may be influenced by prior be- 
liefs such that they use their beliefs to “read into” the instances of missing 
data and explain them. For example, children who believe that sun makes 
plants healthy may use such a belief to explain cases where there is a healthy 
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plant but the status of sun is unknown. The children may reason that the sun 
had to have been there for the plant to be healthy. If participants treat 
missing data as additional instances that can be explained by their prior 
beliefs, those in the missing data conditions would be more likely to judge 
variables consistently with their prior beliefs (e.g., that sun is causal and 
charm is noncausal) than children in the control condition who have no 
missing data instances to reason about. 

In contrast, instead of being influenced by prior beliefs, children’s evalu- 
ation of evidence may be mediated by (perhaps newly formed) beliefs that 
are used to explain the contingency data. If such beliefs are used to explain 
the contingency data, they may also be used to “read into” and explain the 
instances of missing data. For example, children observing charm covarying 
with healthy plants may form the belief that the charm really does do 
something to make plants healthy. Such a belief can be used not only to 
account for the contingency data but also to reason that a healthy plant with 
an unknown status of charm must have had charm to make it turn out the 
way it did. If participants explain missing data in light of mediated beliefs, 
then participants in the missing data conditions should judge variables more 
consistently with the contingency data (e.g., causal when they covary with 
plant health and noncausal when they do not) than those in the control 
condition, who have no instances of missing data to reason about. 

In summa~, this research addresses children’s ability to evaluate evi- 
dence independently of beliefs. It was stressed that beliefs may not only 
influence but also mediate participants’ evaluation of evidence. In this study, 
the influence, mediation, or both of belief on the evaluation of evidence was 
assessed by soliciting children’s, non-college-educated adults’, and college 
students’ judgments and justifications of the causal status of variables-one 
believed causally and one noncausally related to an outcome-that were 
covarying or not covarying with an outcome. In each age or education group, 
participants were assigned to one of three conditions in which they were 
given instances of missing data in addition to instances of contingency data 
or a control condition in which they received no instances of missing data. 
The task was designed to minimize cognitive demands on participants by 
presenting the cont~gency data all together and in a univariable context. 
However, participants were selected for holding strong prior beliefs regard- 
ing the variables, and the data were presented without any additional or- 
ganization of the instances. 

METHOD 

Participants 
Two hundred thirty-six people took part in the study, 161 children and 75 
adults. Two age groups of children were recruited from elementary schools 
in a western Canadian province. There were a total of 76 second- and 
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third-grade students (41 boys and 35 girls, M = S;6 years; range = 7;&10;3 
years). There were a total of 85 sixth- and seventh-grade students (35 boys 
and 50 girls, M = 125 years; range = 10$3-14,0 years). There were two 
groups of adult participants: 40 college students, 22 males and 18 females (M 
= 24 years; range = 18-45 years); and 35 non-college-educated adults, 17 
males and 18 females (M = 29 years; range = 18-55 years). The non-col- 
lege-educated adults were solicited from members of an electrical union and 
the maintenance staff of the University of Saskatchewan. The mean ages of 
participants in the non-college- and college-educated groups were not sta- 
tistically different. 

Task 
Participants were initially interviewed regarding their prior beliefs that the 
presence of the sun is causally related to the growth of healthy plants and 
that the presence of a charm is not. At a second interview, they were asked 
to make judgments regarding the causal status of the charm or sun variables 
solely on the basis of information regarding the status of plants (healthy or 
sick) grown with or without the target variable. They made judgments for 
each of four data sets, with each data set composed of line drawings depict- 
ing instances of healthy and sick plants associated with the presence or 
absence of a variable. 

Each data set was described as the drawings of plants grown by a friend of 
the experimenter. In any given data set, there were drawings of at least two 
healthy and two sick plants. The healthy plants were drawn with many leaves 
and branches whereas the sick plants were drawn with no leaves and droop- 
ing branches. Associated with each plant in a data set was a drawing of a sun 
or a charm (a four-leaf clover). Those who participated were told that each of 
the plants was treated similarly by the person except for whether or not the 
target variable was present or absent. A plant drawn with a variable (charm 
or sun) meant that the variable was present when that plant was grown, 
whereas a plant drawn with an “X” over the variable meant that the variable 
was absent when the plant was grown (see Figure 1). 

Each of the four data sets presented one of two patterns of contingency 
data. The patterns presented either a perfect positive correlation (covaria- 
tion data) or a zero correlation (noncovariation data) between the presence 
or absence of a variable and the health or sickness of the plants. For the 
covariation data, the healthy plants in a data set were associated with the 
presence of the variable, and the sick plants were associated with the ab- 
sence of the variable. For the noncovariation data, the healthy and sick 
plants in a set were each associated equally often with the presence and 
absence of the variable. 

The four data sets that each participant evaluated represent a complete 
factorial of two levels of prior belief (causal belief in sun and noncausal 
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belief in charm) and two levels of contingency data (covariation and nonco- 
variation). As seen in Figure 1, Andrea’s plants present covariation data 
regarding sun (the variable believed to be causal), Brian’s plants present 
noncovariation data for sun, Aaron’s plants present covariation data for 
charm (the variable believed to be noncausal), and Brenda’s plants present 
noncovariation data for charm. 

These four sets of plants presented in Figure 1 were given to participants 
in the control group. There were three other conditions in which subjects 
received data sets each of which contained instances of missing data in 
addition to the contingency data. Participants in the variable unknown 
condition received the four data sets, each of which included the contin- 
gency data and two additional instances of a healthy and a sick plant. 
However, whether the plants did or did not get the target variable (sun or 
charm) on these additional instances was unknown, as represented by a “?” 
over the drawing of the variable. Participants in the outcome unknown 
condition received two extra instances in each data set, one associated with 
the presence of a target variable and the other with its absence. However, 
the health or sickness of the plant in each of these additional instances was 
unknown, represented by a “?I’ replacing the drawing of the plant. Partici- 
pants in the both unknown condition also received two additional instances 
in each data set, but the health or sickness of each plant was unknown as 
was the presence or absence of the target variable.1 

Procedure 
The task involved two separate interviews (Prior Belief and Causal Judg- 
ment Interviews) approximately 3 days apart. All interviews were carried 
out individually and were tape recorded for later coding. All children were 
tested in school during the school day. College students were interviewed on 
campus and adults were interviewed at their home or place of work. 

Prior Belief Intemiew. The first interview consisted of questions re- 
garding participants’ beliefs about what does and does not make a differ- 
ence in whether a plant grows to be healthy or sick and the consistency and 
strength of those beliefs. To elicit their beliefs, participants were presented 

tTo equate the features of the data sets presented to participants in each condition, plant 
instances of the same size were drawn within a standard-sized (7 in. X 4.25 in.) rectangular 
border such that the drawing of either four (control condition} or six (missing data ~ndit~ons) 
instances of plants within a border did not completely fill up the space. That is, each data set 
drawn for each condition was such that there was remaining space for additional plant in- 
stances,within the border. Participants could have inferred that because there was additional 
space within the border of a given data set, other plants were grown and their results were 
unreported. There was no indication from participants’ justifications that they made any such 
inference. However, even if such inferences were made, they should have been made for each 
data set in each condition, therefore not biasing the results. 
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with two pairs of line drawings. One pair of drawings was of a healthy and 
a sick plant and the second pair of drawings was of two healthy plants. 
Participants were first presented with drawings of the one healthy and one 
sick plant, and told the following: 

These are pictures of two of my plants. These are the same kind of plants and 
both started out healthy. But now, this one is healthy, and this one is sick. I 
must have treated these plants differently for them to grow so differently. For 
example, maybe I watered this healthy plant but did not water this sick plant 
and that is why they grew so differently. What are some other ways I may have 
treated this healthy plant differently than I treated this sick plant? 

If a participant did not initially mention the role of sun in promoting the 
growth of healthy plants, he or she was prompted with the following ques- 
tion, “Is there any other way I may have treated these plants differently that 
would have made them grow so differently ?” Typically, participants arrived 
at the possible causal influence of the sun with only this minimal amount of 
prompting. However, if the prompts failed to induce them to spontaneously 
discuss the role of sun in the growth of healthy plants, they were asked, 
“What about sun? Does giving one plant sun and not giving the other plant 
sun make a difference in whether the plants are healthy or sick? Yes, No, or 
Maybe?” 

The interview continued only if a participant believed that sun made a 
difference in the growth of plants. Then participants’ consistency was as- 
sessed by asking, “So, does giving a plant sun make a difference in how the 
plant grows? Yes or no?” After assessing participants’ consistency, their cer- 
tainty was assessed by asking, “How sure are you that sun makes a difference 
whether plants are healthy or sick: a little sure, pretty sure, or very sure?” 

A similar sequence of questions was then asked regarding participants’ 
belief in the noncausal status of charm. They were shown the second pair of 
pictures and were told the following: 

Here I have pictures of two more of my plants. These are the same kind of 
plants, and they started out healthy. I treated these plants differently, but it 
didn’t make a difference in how they turned out-see, they are both healthy. 
For example, maybe I grew this plant next to a picture of my brother, and 
there was no picture next to this other plant. But they both grew to be healthy. 
What are some other ways I may have treated these plants differently that 
didn’t make a difference in how they turned out? 

If a participant did not spontaneously discuss the noncausal status of charm 
(which was often the case because there were an infinite number of vari- 
ables not influencing the growth of healthy plants), he or she was asked, 
“What about a charm? Does putting a charm next to one plant and not 
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putting a charm next to the other plant make a difference in whether the 
plants are healthy or sick? Yes, No, or Maybe ?” If a participant believed that 
charm was noncausal, she or he was asked the consistency question, “So, 
putting a charm next to a plant makes no difference in how the plant grows? 
Yes or no?” Then those who were consistent in believing that charm is a 
noncausal variable in the growth of healthy plants were asked the certainty 
question, “How sure are you that putting charms next to plants makes no 
difference in how plants grow: a little sure, pretty sure, or very sure?” 

Participants were excluded from the second interview based on the cri- 
teria of not consistently judging that sun makes a difference and that charm 
makes no difference in the growth of healthy plants and not being at least 
“pretty sure” of their judgment. A total of eight second- and third-grade 
students, two sixth- and seventh-grade students, and one non-college-edu- 
cated adult were dropped from the study because of their responses during 
the prior belief interview. They were not included in the description of the 
sample. 

Causal Judgmenr Interview. Following the first interview, participants 
in each age group were randomized into one of four conditions (a control 
group or one of the three experimental groups) and interviewed a second 
time. Participants in each condition were told that they were going to see 
drawings of the plants of the interviewer’s friends and that these people 
know nothing about growing plants except what happened to their own 
plants. The interview began with a practice trial, which featured drawings of 
five plants that “Terry” grew and the status of the variable “water” associ- 
ated with each plant: Healthy plant with water present, sick plant with water 
absent, healthy plant with water status unknown, unknown plant outcome 
with water present, unknown plant outcome with water status unknown. 
The experimenter presented the five drawings of plant and variable in- 
stances on a single sheet of paper and then described each instance. Each 
participant was then asked to pick out each instance (i.e., can you show me 
the plant that Terry watered but forgot whether it was sick or healthy?). 
Finally, in the presence of the data, those who participated were asked a 
practice causal judgment question, They did not receive any feedback re- 
garding their judgment on the practice trial. 

Following the practice trial,participants were presented with the plants of 
Andrea, Brian, Aaron, and Brenda. The order of presentation of each set of 
plants was randomized. On presentation of a set of plants, the experimenter 
described each instance, and participants were reminded to answer the ques- 
tions only on the basis of the information in front of them and not on the basis 
of what they know about growing plants. In the presence of the first data set, 
participants were first asked the judgment question: "Does giving plants (sun, 
a charm) or no (sun, charm) make a difference in the plants being healthy or 
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sick: Yes,No,or Maybe?“Following the judgment question,participants were 
asked the justification question, “Why do you say that (sun, charm) (makes, 
does not make) a difference ?” If no justi~~tion was elicited by the first way 
of posing the question, a second way was used: “How do you know that (sun, 
charm) (makes, does not make) a difference?” Then participants were asked 
the certainty question: “How sure are you that (sun, charm) (makes does not 
make) a difference: A little sure, pretty sure, or very sure?” If a participant 
was initially uncertain about the causal status of the variable (i.e., responded 
“maybe”), she or he was asked the just~cation question but not the certainty 
question. If the participant was unable to explain his or her uncertainty when 
asked the justification questian, he or she was asked, “Would someone who 
knows a lot about growing plants be able to tell whether giving plants (sun, a 
charm) or no (sun,charm) makes a difference in these plants being heahhy or 
sick?” This question was used as a basis for dis~g~shing between partici- 
pants who were confused about how to interpret the data and those who truly 
believed that there is no determinate answer to the question. We supposed 
that participants who experienced true indeterminacy would hold that even 
an expert would also be indeterminate as well. This question was asked 
infrequently (4% of all data sets). After completing the questioning for one 
data set, it was removed and a new data set was randomly selected and 
presented to participants and the sequence of questions were asked again. 
This procedure continued until all four data sets were presented. 

Coding 
Responses to the judgment and certainty questions for each data set were 
combined into a single 7point scale of causal certainty. Each point on the 
scale reflects a particular answer to the judgment and certainty questions: 1 
(very sure that the variable is not causal), 2 (pretty sure the variable is not 
causal), 3 (a little sure the variable is not causal), 4 (the variable is neither 
causal nor noncausal), 5 (a little sure the variable is causal), 6 (pretty sure the 
variable is causal), and 7 (pery sure that the variable is causal). 

Following Kuhn et al. (1988), responses to each justification question 
were coded as either evidence-based or belief-based, independently of their 
responses to the judgment and certainty questions. A justification was coded 
as evidence-based if it involved a direct or indirect reference to the contin- 
gency data. An example of a direct evidence-based justification is, ‘The sun 
makes a difference because each time a plant in the picture had sun it was 
healthy,” whereas an example of an indirect evidence-based justification is, 
The charm is causal because healthy plants have charm.” The latter does 
not make direct reference to the contingency data in the data set, although 
there is no reason to believe the participant was referring to any plants other 
than those in the data set. Included as evidence-based justifications were 
indete~inate judgments that were justified by direct or indirect reference 
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to the data. A example of an indeterminate judgment justified by a direct 
reference to the data is, “Can’t tell (whether or not sun makes a difference) 
. . * because sun made the plant healthy here (pointing to an instance) but 
made it sick here (pointing to another instance).” An indeterminate judg- 
ment justified by an indirect reference to the data was one in which partici- 
pants claimed that an expert could not tell whether or not a variable has a 
causal influence on the plants. Such a justification was credited as evidence- 
based because it reflected a judgment about the indeterminacy of the data 
that no one including an expert could resolve. 

All other justifications were coded as belief-based, including ones involv- 
ing a reference to the participant’s or others’ knowledge (or lack thereof) 
or beliefs about growing plants. A failure to respond or an irrelevant re- 
sponse to the justification question (i.e., one having nothing to do with the 
variable or with growing plants, e.g., “because the pot was big”) were also 
coded as belief-based. Coding all these responses as belief-based is in keep- 
ing with Kuhn et al. (1988) as each reflects a failure to consider or make 
reference to the contingency data alone in making judgments of the causal 
status of variables. Interrater reliability for judging 40 randomly selected 
participants (160 justifications) was 92%. The two scorers resolved their 
disagreements through discussion. 

RESULTS 

The data regarding age or educational differences in participants’ responses 
to the judgment and certainty questions on each of the four data sets (coded 
together on a 7-point scale of causal certainty) were analyzed first, followed 
by an analysis of their responses to the justification questions. 

Causal Certainty Judgments 
Causal certainty scores for each of the four data sets were subjected to a 4 
(Group: Second and Third Grade, Sixth and Seventh Grade, Adults, and 
College Students) X 2 (Prior Belief: Causal vs. Noncausal) X 2 (Contin- 
gency: Covariation vs. Noncovariation Data) X 4 (Condition: Control, Vari- 
able Unknown, Outcome Unknown, Both Unknown) mixed-model analysis 
of variance (ANOVA). Prior belief and contingency data were within-sub- 
ject variables, and group and condition were between-subject variables. This 
analysis, like all other ones, employed a correction for unequal cell sizes 
(Levine, 1991). The results of the ANOVA are reported in terms of age or 
educational differences in the effect of (a) contingency data, (b) prior belief, 
and (c) condition on participants’ causal certainty scores. 

Contingency Data. With respect to the influence of contingency data 
on causal certainty scores, the ANOVA revealed a main contingency data 
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effect, F&220) = 318.76,~ < .OOl, and a Group X Contingency Data inter- 
action, F (3, 220) = 34.30, p < .OOl. Table 1 presents each group’s mean 
causal certainty score for the sun and charm variables when they covaried 
with plant health (covariation data) and when they did not (noncovariation 
data). When the variables covaried with plant health, the mean causal cer- 
tainty score for each group was above 4, reflecting a causal judgment on the 
scale, and when the variables did not covary, each group’s mean score was 
below 4, reflecting noncausal judgments. Simple effects analysis revealed 
that each group had a higher mean causal certainty score for the variables 
when they covaried with plant health than when they did not covary, F(1, 
220) ranging from 40.77 to 260.60, all ps < .OOl . However, a Newman-Kuels 
post hoc test (p < .OS> showed that the difference between mean scores for 
covariation and noncovariation data was significantly larger for college stu- 
dents than for participants in the other groups, who did not differ from each 
other (see Table 1). Thus those in each group judged the causal status of 
variables differently when they covaried than when they did not covary with 
plant health, although, compared to all other participants, the college stu- 
dents were most different in their judgment of the variables’ causal status. 
This result supports Ruffman et al.% (1993) finding that children can arrive 
at different conclusions about the causal status of a variable if they observe 
different data regarding the variable’s contingency with an outcome. 

Prior Belie& The ANOVA also revealed a main effect of prior belief, 
41,220) = 284.62, p < .OOl, and a Group X Prior Belief interaction, F(3, 
220) = 6.16, p < .OOl. Table 1 also presents each group’s causal certainty 
score for judgments regarding the sun and charm variables, averaged over 
judgments made for each variable covarying and not covarying with plant 
health. Each group’s mean causal certainty score for the sun variable was 
above 4, reflecting a causal judgment on the scale, and the score for the 

Table 1. Mean Causal Certainty Score by Group for Contingency Data and 
Prior Belief 

Contingency Data Prior Belief 

Group n Cov. Noncov. Difference Causal Noncausal Difference 

Second and third 76 4.93 3.93 1.00 5.63 3.24 2.39 
Sixth and seventh 85 4.93 3.76 1.17 5.72 2.97 2.75 
Adults 35 5.29 3.61 1.68 5.67 3.23 2.44 
College 40 6.51 2.99 3.52 5.28 4.22 1.06 

Note: The causal certainty score ranges from 1 very sure the variable is noncausal, to 4 the 
variable is neither causal nor noncausal, to 7 very sure the variable is causal. A score below 4 
reflects a noncausal judgment, and a score above 4 reflects a causa1 one. Cov. = covariation; 
Noncov. = noncovariation. 
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charm variable was below 4, reflecting a noncausal judgment. Simple effects 
showed that participants’ mean causal certainty score was higher for the sun 
than the charm variable, F(1, 220) ranging from 10.03 to 146.48, all ps < .Ol, 
although a Newman-Kuels post hoc test (p < .05) revealed that the college 
students had a significantly smaller difference between mean scores for the 
sun and charm variables than the other groups, who did not differ from each 
other (see Table 1). Thus, participants in each group tended to have an 
overall bias to judge sun as causal and charm as noncausal, despite each 
variable having been presented with the same evidence. However, the judg- 
ments of college students were less biased than all the other participants. 

A three-way interaction between group, prior belief, and contingency 
data, 43,220) = 3.35, p = -02, also proved to be signific~t in the ANOVA. 
The mean causal certainty scores of each age group for each data set is 
presented in Figure 2, aIong with the hypothetical causal certainty scores of 
an ideaf reasoner for each data set. The scores of the ideal reasoner reflect 
judgments of the causal status of a variable for each data set made on the 
basis of the evidence alone, with no influence or mediation of beliefs. An 
ideal reasoner would be very certain of the causal status of the sun and 
charm variables (score of 7) when each eovaried with the health of plants 
and equally certain of the noncausal status of each (score of 1) when they 
did not covary with plant health. 

Figure 2 shows that the causal certainty scores of each group are gener- 
ally similar to the ideal reasoner for the data sets where the contingency 
data confirmed participants’ prior beliefs. Prior beliefs were confirmed in 
two data sets: when sun covaried with the plant health ~cova~ation/sun: 
Andrea’s plants) and when charm did not (~oncova~at~on/charm: Brenda’s 
plants). Each group was on average “pretty sure” that sun was causal when 
it covaried with plant health (an ideal reasoner would be “very sure”) and 
was between “pretty sure” and “a little sure” of the noncausal status of 
charm when it did not noncovary with plant health (an ideal reasoner would 
be “very sure”). A series of t tests confirmed that each age group had 
significantly higher mean causal certainty scores for sun when it covaried 
with plant health than they did for charm when it did not covary with plant 
health, second- and third-grade: ~(7.5) = 15.5, p < ,001; sixth- and seventh- 
grade: ~(84) = 20.36, p < .OOl; adults: t(34) = 12.87, p < .OtX; college stu- 
dents: t(39) = 17.74,~ < .oOl. 

Figure 2 also shows that when the contingency data disconfi~ed partici- 
pants’ prior beliefs, there were differences in the pattern of judgments for 
the chiidren, adults, and college students. The college students were the 
group most similar to an ideal reasoner because, like the ideal reasoner, the 
college students tended to ignore their prior beliefs and make causal cer- 
tainty judgments for variables in a manner consistent with the contingency 
data. On average, the college students judged that charm was causal when 
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it covaried with plant health and that sun was noncausal when it did not 
covary. The difference in causal certainty judgments for charm given co- 
variation evidence and sun given noncova~ation evidence was significant, 
t(39) = 5.52, p < .OOl. In contrast, the second and third and sixth and 
seventh graders tended to judge the causal status of variables disconfirmed 
by the data in a manner consistent with their prior beliefs. On average, the 
children were ‘<a littIe sure” that sun was causal even though it did not 
covary with plant health and were between “a little sure” and “pretty sure” 
that charm was noncausal even though it did covary with plant health. 
Separate t tests showed that each group of children had significantly higher 
causal certainty scores for sun given noncov~~ation data than for charm 
given covariation data, which is the opposite pattern of scores on the same 
data sets from college students, second- and third-grade: r(E) = 3.90, p < 
.OOl; sixth- and seventh-grade: t(84) = 5.24,~ < .OOf. Finally, the judgments 
of the adults were unlike the other groups in that their causal certainty 
scores for sun not covarying with the health of plants was no different than 
their scores for charm covaring with plant health, t(34) = 1.23, ns. 

Thus, the Age X Prior Belief X Contingency interaction effect is ex- 
plained by children and adults making judgments about the causal status of 
variables that were similar to each other (and to an ideal reasoner) when par- 
ticipants’ prior beliefs about the variables were confirmed by the contingency 
data. However, when the contingency data discon~rmed pa~icipants’ prior 
beliefs about the variables,children tended to judge the variables consistently 
with their beliefs (unlike the ideal reasoner), the college students tended to 
judge the variables consistently with the evidence (like the ideal reasoner), 
and the judgments of the adults tended to be in between the children and the 
college students. The pattern of judgments suggests that, on this task at least, 
there are differences associated with age and education in judging the causal 
status of variables independently of the influence of prior beliefs. 

Copilot. With regard to the effect of missing data on participants” 
causal judgments, the prediction was that children may not simply ignore 
instances of missing data (as an ideal reasoner would) but “read into” them 
additional instances explained by either their prior or newly formed beliefs 
about the causal status of the variables. As a result, children in the missing 
data conditions (variable unknown, outcome unknown, and both unknown) 
were expected to judge the variables to be more consistent with either their 
prior beliefs or the contingency data than children in the control condition, 
who receive no missing data instances to reason about. 

The results of the ANOVA revealed a significant Condition X Contin- 
gency interaction effect, F(3,220) = 6.07,~ = ,001. Table 2 presents partici- 
pants’ mean causal certainty scores for variables covarying (covariation 
data) and not covarying (noncovariation data) with plant health and the 
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difference between those means. Inspection of Table 2 shows that the differ- 
ence between participants’ mean causal certainty scores for variables co- 
varying and not covarying with the outcome is larger in the control 
condition (in which the data sets contained no instances of missing data) 
than in each of the missing data conditions. This observation was largely 
confirmed by a series of t tests, control vs. variable unknown: t(119) = 3.21, 
p < .Ol; control vs. outcome unknown: t(122) = 1.92, p = .057; both un- 
known: t(117) = 3.29,p < .OOl. The results suggests that, contrary to initial 
predictions, participants were not explaining the missing data. Instead, the 
presence of instances of missing data in the data sets made them less certain 
that variables covarying with the outcome are causal and those not covary- 
ing are noncausal. As a result, there is a smaller difference between partici- 
pants’ mean scores of variables covarying and not covarying with the 
outcome in each missing data condition than in the control condition. 

Notably, the presence of instances of missing data did not additionally 
confuse participants about the meaning or significance of the contingency 
data presented in the data sets. The mean number of “can’t tell” responses 
given by control participants (who had no instance of missing data in their 
data sets) over the four data sets (M = .86) was no different than the 
number given by participants in each other condition (variable missing: M 
= 1.00; outcome missing: M = .88; both missing: M = .98), F(3,234) = .34, 
n.s. Moreover, as will be discussed later, participants in the control condition 
were no more likely to give evidence-based responses to the justification 
question than were children in the other conditions. Thus, participants in the 
missing data conditions were not more confused by the data although they 
were less certain of their causal and noncausal judgments than those in the 
control condition. 

In addition to the Condition X Contingency interaction effect, there was 
also a three-way Group x Condition x Contingency interaction effect that 
approached significance, F(9, 220) = 1.79, p = .07. Follow-up t tests com- 
puted within each age group compared the difference in mean scores for 
variables when they covaried and did not covary with plant health for 

Table 2. Mean Causal Cetainty Score by Contingency Data and Condition 

Contingency Data 

Condition Ii Covartation Noncovariation Difference 

Control fS4 5.59 3.39 2.20 
Variable unknown 57 5.08 3.83 1.25 
Outcome unknown 60 5.28 3.69 1.59 
Both unknown 55 5.02 3.78 1.24 

Note. The causal certainty score ranges from 1 very sure r&e variable is noncausal, to 4 fhe 
variable is neither causal nor noncausal, to 7 very sure the variable is causal. A score below 4 
reflects a noncausal judgment, and a score above 4 reflects a causal one. 
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participants in the control and experimental conditions. To specifically test 
for an effect of missing data, the difference scores of participants in the 
control condition were compared to the difference scores of those in all 
three experimental conditions combined (See Table 3). The results demon- 
strated that second and third graders had a higher difference score in the 
control condition (M = 1.74) than in the combined missing data conditions 
(M = .72), t(74) = 3.30, p < .OOl. Similarly, the sixth and seventh graders 
had a higher difference score in the control (M = 1.91) than the missing 
data conditions (M = .91), $83) = 3.65, p < .OOl. The adults’ difference 
scores in the control (M = 1.77) and the missing data (A4 = 1.64) conditions 
were not significantly different, t(33) = 0.19, n.s. Similarly, the college stu- 
dents’ mean evidence scores in the control (M = 3.83) and the experimental 
(M = 3.39) conditions were not significantly different, t(38) = 0.78, n.s. The 
results suggest that the presence of instances of missing data influenced 
children’s, but not adults’ or college students’, certainty of the causal or 
noncausal status of variables when they covaried and did not covary with 
plant health. The effect was to make the children but not the adults or 
college students less certain of their causal or noncausal judgments. 

To assess whether or not participants referred to the data when they justi- 
fied their judgments of the causal status of variables, their responses to each 
justification question were coded as belief-based (scored as 0) or evidence- 
based (scored as 1). (Six participants, two sixth and seventh graders, three 
adults, and one college student, were dropped from this analysis because 
their justifications were not recorded.) The dichotomous data were sub- 
jected to a 4 (Group) X 2 (Prior Belief) X 2 (Contingency Data) X 4 (Con- 
dition) mixed-model ANOVA, with prior belief and contingency data as 

Table 3. Mean Causal Certainty Score by Group and Contingency Data for 
Participants in the Control and Combined Missing Data Conditions 

Control Missing Data 

Group n cov. Noncov. Difference n cov. Noncov. Difference 

Second and 21 5.43 3.96 1.47 55 4.75 4.03 0.72 
third 

Sixth and 22 5.23 3.32 1.91 63 4.83 3.92 0.91 
seventh 

Adults 9 5.33 3.56 1.77 26 5.27 3.63 1.64 
College 12 6.71 2.88 3.83 28 6.43 3.04 3.39 

Note. The causal certainty score ranges from 1 very sure Ihe variable is noncausal, to 4 the 
variable is neither causal nor noncausal, to 7 very sure the variable is causal. A score below 4 
reflects a noncausal judgment, and a score above 4 reflects a causal one. Cov. = covariation; 
Noncom. = nonco~ariation. 
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within-subject variables and group and condition as bc~ee~“subj~t vari- 
ables. There was a main group effect, F(3,214) = 34.35, p < ,001. A New- 
man-Kuels post hoc test (p < .OS) revealed that there was a significant 
difference in the mean frequency (maximum = 4) of evidence-based justifi- 
cations among adjacent age or education groups (second and third graders: 
M = 1.01; sixth and seventh graders: M = 2.71; adults: M = 2.44; college 
students: M = 3.69). 

There was also a contingency data main effect, F(1,214) = 18.40,~ < .OOl, 
due to participants giving more evidence-based justifications for the nonco- 
variation (M = 1.04 out of two noncovariation data sets) than the covaria- 
tion (M = 0.84) data. However, the main effect was modulated by a 
significant Group X Contingency Data interaction effect-t,F(3, 214) = 3.%# 
= .009. An analysis of simple effects revealed that only the sixth and seventh 
graders had a significantly higher mean frequency of evidence-based justifi- 
cations when the variables did not covary than when they did covary with 
plant health, F(1,214) = 27.29,p < ,001 (see Figure 3). The results suggest 
that there are differences associated with age and education in participants’ 
tendency to justify causal judgments on the basis of contingency data, even 
though such judgments may have been made on the basis of the data. 

DISCUSSION 

The results of this research point to sources of both continuity and discon- 
tinuity between children and adults in their evidence evaluation skills. On 
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the one hand, the mean causal certainty score for each age or education 
group of participants was significantly different for variables when they 
covaried than when they did not covary with plant health. Overall, members 
of each age or educational group judged that variables were causal when 
they covaried with plant health and that the same variables were not causal 
when they did not covary with plant health. Such a continuity between the 
performance of children and adults confirms the results of other studies 
(Bullock, 1991; Bullock et al., 1992; Koslowski et al., 1989; Ruffman et al., 
1993) showing that children evaluate the same variables differently depend- 
ing on their contingent relation with an outcome. 

On the other hand, there were three clear examples of discontinuity in 
the evidence evaluation skills of the two groups of children compared to the 
two adult groups. First, the two groups of children made evidence-based 
justifications for only a minority of their judgments, whereas the adults and 
college students gave evidence-based justifications for a majority of their 
judgments. This finding also confirms the results of other researchers (Bul- 
lock, 1991; Bullock et al., 1992; Kuhn et al., 1988; Ruffman et al., 1993) 
although Bullock et al. and Ruffman et al. denied Kuhn et al.? claim that 
the difference in children’s and adults’ tendency to give evidence-based 
justifications reflects a fundamental change in their process for evaluating 
evidence. 

Second, when the contingency between a variable and plant health dis- 
confirmed participants’ prior belief regarding the variable, the two groups 
of children, unlike the adults and college students, tended to make judg- 
ments regarding the variable that were consistent with their prior beliefs. 
However, when the contingency data confirmed participants’ prior beliefs, 
the children and adults made similar judgments. This result confirms the 
results of Klahr, Fay, and Dunbar (1993) who found that third and sixth 
graders were less likely than community college and college students to 
successfully test hypotheses about the correct function of a repeat key of a 
programmable robot when the function was believed to be implausible 
(13% vs. 54%). However, when the function was believed to be plausible, 
the success rate of children (75%) and adults (88%) were similar. 

The influence of prior beliefs on children’s evaluation of evidence may 
have been detected in the research presented here but not in other studies 
in part because only in the research presented here did participants have 
rich knowledge of the task domain and hold strong beliefs about the vari- 
ables they were evaluating. One methodological conclusion to draw in 
comparing the results of this study with the others is that the nature of the 
task can highlight either children’s evidence evaluation competencies or 
their confusions and biases. 

Third, only the judgments of the two groups of children, unlike the adults 
and college students, were influenced by the presence of evidentially irrele- 
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vant instances of missing data, The effect of missing data was contrary to the 
prediction that children would “read into” the missing data further instances 
that could be explained by their (prior or newly formed) beliefs about the 
data. Rather, the influence of missing data on children was to make them 
less certain of the difference in the causal status of variables covarying and 
not covarying with the outcome. It was not simply that children became 
confused by the presence of instances of missing data in the data set. Rather, 
the presence of such instances made children in the missing data condition 
modulate their certainty that variables eovarying or not covarying with 
plant health were (respectively) causal or noncausal. The finding that evi- 
dentially irrelevant data made children more uncertain is Contras to other 
findings that children rely on irrelevant task features in order to resolve 
uncertainty in a task situation (Scholnick & Wing, 1988, Somerville, Hadkin- 
son, & Greenberg, 1979). It seems that, unlike adults, children do not just 
ignore or dismiss irrelevancies (Amsel et al,, 1996), although the precise 
effect of such data on children’s reasoning depends on the task. 

The findings of the study presented here support both continuity and 
discontinuity in the development of evidence evaluation skills. The two 
groups of children demonstrated both inferential competence (like the 
adults) and biases and confusions (unlike the adults) in how they used 
contingency data to evaluate causal hypotheses. The finding that children 
have the competence to evahtate hypotheses on the basis of contingent 
data despite demonstrating ~ferential biases and confusions is not uncom- 
mon in the literature (Klahr et al., 1993). Schauble (1990) found that fifth 
and sixth graders correctly revised many of their causal beliefs, despite the 
fact that 67% of their inferences regarding the evidence were invalid. Simi- 
larly, Karmiloff-Smith and Inhelder (1974) found not only inferential biases 
and unsystematic responses by children who failed to balance blocks at their 
geometric center (a weight was hidden in the block) but also an ability to 
use such repeated failures as evidence disconfirming the generality of their 
geometric-center theory of block balancing. 

The results of the research presented here have identified ways in which 
children’s evidence evaluation skills are both continuous and discontinuous 
with those of adults and scientists, a conclusion also reached by Klahr et al. 
(1993). Such a conclusion calls into question whether there can be an unam- 
biguous answer to the question about children’s status as experimental 
scientists As it stands now, the debate about whether or not children are like 
experimental scientists depends on the kind of evidence evaluation task 
used to assess children and the assumptions made about the appropriate 
model of scientists’ evidence evaluation. Perhaps a better, more productive, 
way of thinking about the status of children as experimental scientists is not 
to assume that evidence evaluation skills are historically fixed in scientists. 

We propose that just as there are parallels between ontogenesis and the 
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history of science in the content of theories that children form and revise (cf. 
McCloskey, 1983; Piaget & Garcia, 1989), there may also be parallels at the 
level of the process of scientific experimentation in general and evidence 
evaluation in particular. Hypothetico-deduction, or the ‘method of hypothe- 
sis,’ was not always accepted as appropriate scientific practice in the history 
of science (Laudan, 1981). In such a method, hypotheses about the world are 
first proposed and data that would confirm or disconfirm them are deduced 
from the hypotheses. Only then are observations made of data from the 
world (Kyburg, 1970). The preferred methods of scientific experimentation 
in the 17th and 18th centuries were inductive or abductive ones (Laudan, 
1981). In these methods, laws or explanations are inferred only after obser- 
vations of the world are made, rather than being proposed h~othetically 
prior to making any observation (Kyburg, 1970). The inferred law or expla- 
nation is justified on the basis of being the best account of all the observa- 
tions made (i.e., an inference to the best explanation). 

The factors associated with the children’s but not adults’ evidence evalu- 
ation performance- belief-based justifications, prior beliefs, and missing 
data-are consistent with the notion that they are poor hypothetico-deduc- 
tivists, but reasonably competent inductivists or abductivists. Children em- 
ploying an inductive or abductive method may in fact be validly justifying 
their judgments when they refer to their beliefs-a justification based on 
children’s explanations being their best account of the available informa- 
tion. Similarly, children employing an inductive or abductive method may 
be influenced by prior beliefs when evaluating information because such 
beliefs direct which laws or explanations are proposed to account for the 
information, Finally, the influence of missing data on children’s evidence 
evaluation performance may also reflect their employing an inductive or 
abductive method. In such a method, laws or explanations are proposed to 
account for all the data. However, children’s explanations could only be 
applied to a subset of the data in the data sets presented in the missing data 
conditions (i.e., four of the six instances) as opposed to all the instances (i.e., 
all four instances) in the data sets presented in control condition. Thus, 
children in the missing data conditions may have been less certain of the 
causal status of variables covarying and not covarying with plant health than 
children in the control condition because of the proportion of instances in 
the data sets that children’s explanations could account for in the conditions. 

It remains to be seen whether or not children revise the methodological 
principles and procedures that guide their everyday inquiries, and, if so, 
whether children and scientists reject old and accept new methods for the 
same reason. Answers to such questions will require more careful analyses 
of children’s use of such methods of scientific experimentation as induction, 
abduction, falsification, and hypothetico-deduction (and all their variants). 
Identifying such developmental differences in children’s evidence evalu- 
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ation processes may prove to be more productive than separate examina- 
tions of children’s ability to reason according to particular models of scien- 
tific reasoning. 
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