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Knowledge of the equal sign as an indicator of mathematical equality is foundational 
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The equality relationship denoted by the equal sign is a foundational concept that 
serves as a key link between arithmetic and algebra (Baroody & Ginsburg, 1983; 
Carpenter, Franke, & Levi, 2003; Kieran, 1981; Knuth, Stephens, McNeil, & 
Alibali, 2006; MacGregor & Stacey, 1997). Despite decades of research committed 
to investigating children’s understanding of the equal sign and the related concept 
of mathematical equality, limitations of measurement have posed impediments to 
maximizing the depths of our knowledge. This study was part of a project using a 
psychometric approach to develop assessment instruments that enhance our under-
standing of children’s knowledge of the equal sign (see also Rittle-Johnson, 
Matthews, Taylor, & McEldoon, 2011).

We undertook this study against a backdrop in which Hill and Shih (2009) noted 
that less than 20% of studies published in the Journal for Research in Mathematics 
Education over the past 10 years had reported on the validity of the measures. The 
authors concluded that “without conducting and reporting validation work on key 
independent and dependent variables, we cannot know the extent to which our 
assessments tap what they claim to.” Our assessment instrument is at the vanguard 
of efforts to address these concerns with respect to measuring children’s under-
standing of the equal sign as an indicator of mathematical equality. More generally, 
it provides a model for use of a new, psychometrically oriented method for measure-
ment development.

To foreshadow our approach, we used item response theory to integrate item 
types that are often used separately. Combining these item types allowed us to paint 
a richer picture of children’s understanding than was previously possible from 
considering the different types of items in isolation. In this article, we map much 
of the variability in children’s knowledge that goes undetected by current measures 
and provide empirical data that inform the extent to which children’s understanding 
of the equal sign contributes to algebraic thought.

CHILDREN’S KNOWLEDGE OF THE EQUAL SIGN

Introduced by Recorde in the 16th century, the “=” sign has become the univer-
sally recognized symbol for indicating mathematical equality (Cajori, 1928). 
Mathematical equality can loosely be defined as the principle that two sides of an 
equation have the same value and are thus interchangeable (Kieran, 1981; 
Wittgenstein, 1961). From a more formal perspective, mathematical equality is an 
example of an equivalence relation and therefore satisfies the symmetric, reflexive, 
and transitive properties.

Much of what people know about the equal sign, however, is demonstrated not in 
their abilities to cite formal mathematical properties but instead lies implicitly in their 
understandings of the equal sign and its uses (see Zhu & Simon, 1987). Indeed, much 
of how we come to understand any given symbol—and the concepts that it denotes—
is connected to participation in various language games (Wittgenstein, 2001; see also 
de Saussure, 1959). Simply put, it is by mastering the symbol’s meaning in different 
contexts (i.e., becoming familiar with its use in language games) that we come to 
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know its referent. Functional knowledge of mathematical equality is in large part 
knowledge of the “=” symbol, both in terms of how it is interpreted directly and in 
terms of the procedures and transformations that it sanctions.

A well-developed conception of the equal sign applicable to elementary and 
middle school children is characterized by relational understanding: realizing that 
the equal sign symbolizes the sameness of the expressions or quantities represented 
by each side of an equation (e.g., Baroody & Ginsburg, 1983; Behr, Erlwanger, & 
Nichols, 1980; Carpenter et al., 2003; McNeil & Alibali, 2005a). There is general 
agreement that relational understanding of the equal sign supports greater algebraic 
competence, including equation-solving skills and algebraic reasoning (e.g., Alibali, 
Knuth, Hattikudur, McNeil, & Stephens, 2007; Jacobs, Franke, Carpenter, Levi, & 
Battey, 2007; Kieran, 1992; Knuth et al., 2006; National Council of Teachers of 
Mathematics & Mathematical Sciences Education Board, & National Research 
Council, 1998; Steinberg, Sleeman, & Ktorza, 1991). Because algebra is an impor-
tant gateway not only into higher mathematics, but also into higher education more 
generally (Adelman, 2006; Moses & Cobb, 2001), the importance of building high-
quality relational understanding of the equal sign is of critical importance.

Unfortunately, numerous studies point to the difficulties that American elementary 
and middle school children have understanding the equal sign (e.g., Alibali, 1999; 
Behr et al., 1980; Cobb, 1987; Falkner, Levi, & Carpenter, 1999; Jacobs et al., 2007; 
Li, Ding, Capraro, & Capraro, 2008; McNeil, 2007; Perry, 1991; Powell & Fuchs, 
2010; Rittle-Johnson, 2006; Rittle-Johnson & Alibali, 1999; Weaver, 1973). Children 
often interpret the equal sign as an operator signal that means ‘‘adds up to’’ or ‘‘gets 
the answer’’ (e.g., Baroody & Ginsburg, 1983; McNeil & Alibali, 2005b). As a result 
of this misconception, most children in Grades 1 to 6 solve problems such as 8 + 4 = 
! + 5 incorrectly, writing 12 or 17 in the box (e.g., Falkner et al., 1999). Similarly, 
most American elementary school children reject closed equations that do not appear 
in a standard “a + b = c” format (e.g., they consider equations such as 3 = 3 and 7 + 
6 = 6 + 6 + 1 to be false or nonsensical; Baroody & Ginsburg, 1983; Behr et al., 1980; 
Falkner et al., 1999). These errors are thought to result from children’s almost exclu-
sive exposure to problems in standard (indicated)-operations-equals-answer format 
(e.g., 4 + 5 = 9) (Falkner et al., 1999; McNeil et al., 2006; Li et al., 2008).

MEASURING KNOWLEDGE OF THE  
EQUAL SIGN—A UNIFIED APPROACH

Despite the progress that has been made in detailing the sources and signs of 
children’s misconceptions about the equal sign, two important measurement issues 
remain significant obstacles to advancing our understanding of children’s knowl-
edge of the equal sign and the associated concept of mathematical equality. First, 
researchers have not used assessments with proven reliability and validity when 
investigating children’s understanding of the equal sign (Hill & Shih, 2009;  
Rittle-Johnson et al., 2011). Second, the assessments of equal-sign knowledge that 
are currently in use have tended to be incommensurable. That is to say that (a) 
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different researchers have used different types of items to measure what is taken to 
be the same construct, and (b) this diversity of independently employed items makes 
it difficult to compare results obtained across studies.

The problem of incommensurable measures is rooted in the fact that research on 
children’s understanding of the equal sign has employed primarily three different 
types of items: (a) open equation-solving items, such as 8 + 4 = ! + 5 (e.g., Alibali, 
1999; Behr et al., 1980; Falkner et al., 1999; Jacobs et al., 2007; McNeil, 2007; 
Matthews & Rittle-Johnson, 2009; Perry, 1991; Powell & Fuchs, 2010;  
Rittle-Johnson, 2006; Weaver, 1973); (b) equation-structure items, such as deciding 
whether 3 + 5 = 5 + 3 is true or false (e.g., Baroody & Ginsburg, 1983; Behr et al., 
1980; Falkner et al., 1999; Molina & Ambrose, 2006; Rittle-Johnson & Alibali, 
1999; Seo & Ginsburg, 2003); and (c) equal-sign-definition items, such as asking 
children to provide an explicit verbal definition of what the equal sign means (Behr 
et al., 1980; Ginsburg, 1977; Knuth et al., 2006; McNeil et al. 2006; Seo & Ginsburg, 
2003). Somewhat less frequently, a fourth type of item is used: advanced relational 
reasoning items, such as asking children to solve the equation 37 + 54 = ! + 55 
without having to add 37 + 54 (e.g., Blanton, Levi, Crites, & Dougherty, 2011; 
Carpenter et al., 2003; Jacobs et al., 2007).

Although different in form, each of these types of items has been accepted as 
tapping children’s knowledge of the equal sign as an indicator of the equality rela-
tion. A majority of past studies have privileged one or another of these types of items 
over the others. Researchers who have employed multiple item types have tended to 
compartmentalize them, analyzing different item types separately (e.g., Jacobs et 
al., 2007; McNeil & Alibali, 2005b; Powell & Fuchs, 2010; Rittle-Johnson, 2006; 
Seo & Ginsburg, 2003). Thus, we are left unaware of the relative difficulties of 
commonly used items or the typical order in which competence is gained.

DETAILING THE CONSTRUCT

To address these limitations, we sought to unify these diverse items into a single 
assessment. We used Mark Wilson’s construct modeling approach to measurement 
development as a guide for our efforts (Wilson, 2003, 2005). We began by devel-
oping a construct map, which is a representation of the continuum of knowledge 
levels for the construct under consideration. We based our construct map for chil-
dren’s knowledge of the equal sign as an indicator of mathematical equality on the 
general agreement that understanding of the equal sign ranges from operational on 
the low end to relational on the high end (e.g., Alibali et al., 2007; Carpenter et al., 
2003; Kieran, 1981). Our map fleshes out this dichotomy, resolving it into four 
levels ranging from rigid operational to more advanced comparative relational 
conceptions of the equal sign. The levels of the construct map are distinguished by 
the types of contexts in which the equal sign is understood as knowledge progresses 
(see Table 1). Note that our construct map was not intended to be an expansive 
concept map covering the universe of thought that the concept of mathematical 
equality might be argued to span. Instead, it covers a subset of symbolic forms using 
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the equal sign that has been studied previously with school-aged children. Hence, 
our construct map has mostly been restricted to understanding the equal sign in 
arithmetical contexts as well as select early extensions to algebra (e.g., letters as 
variables, addition property of equality).

The construct map we developed in Rittle-Johnson et al. (2011) is presented in 
Table 1, with less sophisticated knowledge represented at the bottom and more 
advanced knowledge represented at the top. Students at Level 1, the rigid operational 
level, are expected to have success with equations in the standard operations-equals-
answer format, but to fail with equations in other formats. At Level 2, the flexible 
operational level, children maintain an operational view of the equal sign, but 
become somewhat more flexible with respect to the types of equation formats that 
they correctly solve and accept as valid. Children at this level specifically become 

Table 1
Construct Map for Knowledge of the Equal Sign as Indicator of Mathematical Equality

Level Description Core equation structure(s)

Level 4: 
Comparative 
Relational

Successfully solve and evaluate 
equations by comparing the 
expressions on the two sides of 
the equal sign, including using 
compensatory strategies and 
recognizing transformations 
maintain equality. Consistently 
generate a relational interpreta-
tion of the equal sign.

Equations that can be most 
efficiently solved by applying 
simplifying transformations: 
For example, without adding 
67 + 86, can you tell if the 
number sentence “67 + 86 = 
68 + 85” is true or false?

Level 3: Basic 
Relational

Successfully solve, evaluate, 
and encode equation structures 
with operations on both sides of 
the equal sign. Recognize rela-
tional definition of the equal 
sign as correct.

Operations on both sides:
a + b = c + d
a + b – c = d + e

Level 2: Flexible 
Operational

Successfully solve, evaluate, 
and encode atypical equation 
structures that remain compat-
ible with an operational view of 
the equal sign. 

Operations on right:
c = a + b
No operations: a = a

Level 1: Rigid 
Operational

Only successful with equations 
with an operations-equals-
answer structure, including 
solving, evaluating, and 
encoding equations with this 
structure. Define the equal sign 
operationally.

Operations on left:
a + b = c (including when 
blank is before the equal sign)

Note. Table adapted from Rittle-Johnson et al. (2011, p. 87).
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comfortable with equations that are atypical but remain consistent with an opera-
tional view of the equal sign, such as equations that are “backwards.” These back-
wards equations remain consistent with an operational view because their mirror 
images are equations in standard format (e.g., a student in Behr et al., 1980, rewrote 
! = 4 + 5 as 5 + 4 = !). At Level 3, children begin to hold a basic relational view, 
although it coexists with an operational view. Children’s nascent relational under-
standing is primarily manifested in their success with equations with operations on 
both sides (e.g., 4 + 5 + 8 = ! + 8), and they recognize a relational definition of the 
equal sign as a good definition. Finally, children at Level 4 have a comparative 
relational understanding of the equal sign. The hallmark competence at this level is 
understanding the symbolic transformations that change the form of an expression 
without changing the equality relation symbolized by the equal sign. For example, 
children with a comparative understanding know that performing the same permis-
sible actions (limited to applications of familiar functions, and with certain excep-
tions, such as division by zero) on each side of an equation maintains the equality 
of the quantities represented by the two sides and makes it unnecessary to engage 
in full computation. Similarly, children at this level can recognize the equality 
between the sides of equations such as 67 + 86 = 68 + 85 without the need to 
compute. These children realize that the equal sign represents a relation between the 
two sides of the equation and that the relations among numbers in the two expres-
sions make it unnecessary to carry out the calculations (Carpenter et al., 2003). 
Because some Level 4 items can be solved using inefficient calculate-and-compare 
methods, most items assessing Level 4 knowledge require that children show 
evidence of strategies or explicitly relational reasoning.

Although the construct map is presented as having four levels for purposes of 
conceptual clarity, our model of the construct is continuous. The continuous nature 
of the model means that the levels should not be interpreted as discrete stages. 
Instead, knowledge change is expected to follow a gradual and dynamic progres-
sion, with less sophisticated knowledge sometimes coexisting and competing with 
more advanced knowledge (Siegler, 1996). For example, an operational view of the 
equal sign can be elicited even from adults in certain circumstances (McNeil & 
Alibali, 2005a, 2005b).

Evidence from our earlier study strongly supported the validity of our construct 
map and the reliability of our assessment (Rittle-Johnson et al., 2011). We found 
that all the items on the original assessments substantially loaded on the same 
construct, indicating that they could be measured on a unidimensional interval-
level scale. We used the assessment from Rittle-Johnson et al. (2011) as a spring-
board for the development of the refined assessment used in the current study.

THE CURRENT STUDY: GAINING LEVERAGE  
BY COMBINING MEASURES

In Rittle-Johnson et al. (2011), we focused on the psychometric properties of our 
original assessment. In this article, we discuss a refinement and replication of our 
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original study with a focus on how the assessment provides insights into the nature 
of children’s knowledge. In addition to replicating our past findings with a new 
population of public school (rather than parochial school) students, we concentrated 
on two key contributions that were not addressed in the first article.

Contribution 1: Elaborating the Variability in Children’s Knowledge

Our assessment approach adds significant resolution to the wide range of vari-
ability that exists among children’s knowledge of the equal sign. Currently, we are 
usually limited to binary partitions that result from characterizing children 
according to whether they succeed or fail at a particular type of item. Either–or 
distinctions hide the within-group variability in the binary groups that result. Our 
integrated assessment approach reveals the variability in children’s knowledge that 
would otherwise go undetected. We did not capitalize on this strength in our 
previous article.

Contribution 2: Evidence for the Importance of Equal-sign Knowledge

Establishing a unified measurement scale for equal-sign knowledge helps inform 
our notions of the extent to which children’s understanding of the equal sign impacts 
different kinds of mathematical reasoning. Our scale also can serve as an anchor for 
evaluating whether new items also load heavily on the construct of equal-sign knowl-
edge. For instance, our earlier work showed that using a single scale could allow us 
to place a few items typically considered to require algebraic reasoning on the same 
scale as other items typically used to assess understanding of the equal sign in arith-
metic contexts. These included items requiring children to demonstrate advanced 
relational reasoning about transformations that preserve equality (e.g., if we know 
that 76 + 45 = 121, can we tell without adding whether or not 76 + 45 – 9 = 121 – 9?, 
inspired by Alibali et al., 2007; Carpenter et al., 2003; Steinberg et al., 1991)  and 
items with equations involving letter variables (e.g., n + n + 2 = 17, Jacobs et al., 
2007).

This was an important step toward verifying the link between algebraic thought 
and knowledge of the equal sign. It is often argued that early appreciation of the 
relational character of the equal sign is key for later success in algebra and other 
higher mathematics (e.g., Baroody & Ginsburg, 1983; Blanton et al., 2011; Knuth 
et al., 2006; MacGregor & Stacey, 1997; Steinberg et al., 1991), but the empirical 
evidence supporting such claims is somewhat indirect. No other researchers have 
explicitly attempted to put algebraic reasoning items on the same measurement 
scale as those known to measure knowledge of the equal sign. Although we used a 
few of these items in Rittle-Johnson et al. (2011), we used more diverse items in 
this study to expand our earlier findings and to illustrate more explicitly how they 
related to variability in children’s knowledge of the equal sign in arithmetic 
contexts.

Establishing some subset of algebraic items as internally consistent with other 
items known to measure knowledge of the equal sign provides empirical evidence 
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for the link between knowledge of the equal sign and algebraic reasoning. 
Moreover, this feature of our method can be used to evaluate new potential items 
as they arise, providing insight into whether new candidate items also load heavily 
on the construct of equal-sign knowledge. In this way, our method potentially may 
be used as an exploratory tool to inform our conceptions of the construct of equal-
sign knowledge and the breadth of its reach.

METHOD

Participants

Data were collected from 13 second-grade through sixth-grade classrooms in 
two suburban public schools in Tennessee near the end of the school year. There 
were 224 children who completed the assessment. Of those, 53 were in second 
grade (23 girls), 46 were in third grade (25 girls), 29 were in fourth grade (14 girls), 
59 were in fifth grade (26 girls), and 37 were in sixth grade (16 girls). The mean 
age was 10.3 years (SD = 1.6; Min = 7.7; Max. = 14.1). Most of the children were 
Caucasian; approximately 2% of children were from minority groups. The schools 
served a working- to middle-class population, with approximately 23% of children 
receiving free or reduced lunch.

Children in Grades 2–5 were taught using the Harcourt Mathematics curriculum 
(Maletsky et al., 2005), and Grade 6 children were taught using Glencoe’s 
Mathematics: Applications & Concepts Course curriculum (Bailey et al., 2004). 
Their teachers had not received any professional development focused on 
supporting understanding of the equal sign or of mathematical equality.

Test Development Procedure 

We created two comparable forms of the assessment using a step-by-step item-
matching procedure to ensure similarity of content and difficulty across forms (see 
Rittle-Johnson et al., 2011, for details on item matching). Most of the items on our 
assessment were taken directly from previously published work or created based 
on items present in previous work (Baroody & Ginsburg, 1983; Behr et al., 1980; 
Carpenter et al., 2003; Jacobs et al., 2007; Knuth et al., 2006; Matthews &  
Rittle-Johnson, 2009; Rittle-Johnson, 2006; Seo & Ginsburg, 1983; Warren, 2003; 
Weaver, 1973). Items were classified as Level 1, 2, 3, or 4 based on their equation 
structures and required solution strategies, as outlined in Table 1. In total, there 
were 31 items on each form of the assessment: 13 Level 4 items, 10 Level 3 items, 
5 Level 2 items, and 3 Level 1 items. See Appendix A for a complete list of items 
on one of the forms and Appendix B for the hypothesized position of each item on 
the four-level construct map.

The items used in Rittle-Johnson et al. (2011) were vetted by a panel of four 
mathematics education experts, each of whom had over 10 years experience 
conducting research on elementary school children’s algebraic thinking. We made 
revisions to the original assessment based on empirical evidence of item  
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performance and feedback from the panel. Five items from each form of the assess-
ment used in Rittle-Johnson et al. (2011) were cut due to weak psychometric 
properties, which were often combined with poor ratings from the experts. Eight 
items were added to each form based on the advice of the panel.

Two of the eight items added were Level 2 items, asking whether 4 = 4 + 0 was 
true or false and what the equal sign meant in the context of “1 quarter = 25 
pennies.”1 Six of the eight new items on each form were aimed at further assessing 
more advanced relational thinking (Level 4 items) that is associated with algebraic 
thought. Four of these items on each form tested children’s practical knowledge of 
the arithmetic properties of equality, which hold that an equality relationship 
remains true as long as an identical permissible function is applied to both sides of 
the equation (i.e., to both the expression to the left of and the expression to the right 
of the equal sign; see Figure 1 for a sample item). These types of problems have 
been cited both as addressing the concept of equality and as addressing the types 
of relational thought that underlie formal transformational algebra (Blanton et al., 
2011; Carpenter et al., 2003; Jacobs et al., 2007; National Research Council, 2001; 
Steinberg et al., 1991). Although these items can be solved by computation, we 
coded performance based upon children’s explanations of how the problem can be 
answered without computation. Answers coded as correct needed to call upon 
explicit knowledge of the properties of equality (e.g., “minus 7 is on both sides so 
you don’t need it”). The final two new items on each form featured letter variables 
that are commonly seen in formal algebra. For instance, one asked children to “find 
the value of n” for the equation n + n + n + 2 = 17 (from Jacobs et al., 2007). There 
was only a single item with letters as variables on each of the original assessments. 
None of the items using letters as variables featured products symbolized by the 
juxtaposition of variables or constants (e.g., 3x – 2 = 7), as expertise with this 
symbolic form was expected to be confusing for children at the age levels sampled.

7.  Without subtracting the 9, can you tell if the statement below is true or false?

76 + 45 = 121 is true. 
Is 76 + 45 – 9 = 121 – 9 true or false?

True False  Can’t tell without subtracting 
How do you know?

1 Some researchers caution that using the equal sign in these contexts can lead to confusion due to 
errors that result from word-matching biases (e.g., Clement, 1982). The current case, however, does 
not involve constructing an equation, a context in which the error typically arises. Moreover, our panel 
judged the item as appropriate for measuring knowledge of equal-sign knowledge.

Figure 1. Sample item probing children’s knowledge of transformations that preserve 
equality..
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Test Administration

The assessment was administered on a whole-class basis by members of the 
project team. We used a spiraling technique to distribute the two forms of the assess-
ment in each classroom, alternating between handing out the first and second forms 
of the assessment. Completion of the assessment required approximately 45 
minutes. Test directions were read aloud for each type of item in second-grade 
classrooms to minimize the possibility that reading level would affect performance. 
Otherwise, test administration was identical across grade levels. Children received 
no instruction on the equal sign as part of this study.

Scoring

Each item was scored dichotomously (i.e., 0 for incorrect or 1 for correct). For 
computation items, children received a point for answers within one of the correct 
answer to allow for minor calculation errors. This scoring convention is commonly 
used in the literature (e.g., McNeil, 2008; Rittle-Johnson, 2006). Applying stricter 
recoding that did not allow for these calculation errors yielded nearly identical results, 
changing the accuracy classifications for only 3% of all trials. For the nine explanation 
items, children received a point if they mentioned the equality relation between values 
on the two sides of the equation (see Table 2). After initial coding, an independent rater 
coded responses for a randomly selected 20% of the sample, with a mean inter-rater 
agreement of 0.99 for Form 1 (range .96 to 1.00) and .97 for Form 2 (range .87 to 1.00).

The Rasch Measurement Model

We used a Rasch model along with methods from Classical Test Theory to 
evaluate the performance of the assessment. Rasch modeling is a one-parameter 

Item Sample correct responses Sample incorrect answers

What does the equal sign 
(=) mean?

“It means the same as”  
“Is equal to or has the same 
amount”

“The answer to the  
question”  
“The sum”

Without subtracting the 7, 
can you tell if the state-
ment is true or false?  
56 + 85 = 141 is true. Is 
56 + 85 – 7 = 141 – 7  
true or false?

 “Because it’s subtracting 7 
from both sides and 56 + 85 
= 141 then subtract seven 
and it’ll be equal.” “Because 
before you minus seven you 
have 141 for both.”

“I did the math.”  
“In my head I subtracted 
and got the same answer.” 
“Because I looked at both 
number sentences and they 
didn’t match”

Without adding 89 + 44, 
can you tell if the number 
sentence is true or false? 
“89 + 44 = 87 + 46” 

“Because all you do is take 
two from 89 and put two on 
44.” “Because 89 – 87 = 2 
and they add 2 to 44 so it is 
even.” 

“Because 89 + 44 = 133 
and 87 + 46 = 133 too.” 
“You just have to add the 
numbers up.”

Table 2
Coding Scheme for Select Explanation Items
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member of the item response theory (IRT) family (Bond & Fox, 2007). The Rasch 
model estimates both respondent ability and item difficulty simultaneously, 
yielding the probability that a particular respondent will answer a particular item 
correctly (Rasch, 1960/1993; Wright, 1977). We used Winsteps software version 
3.68.0.2 (www.winsteps.com) to perform all IRT estimation procedures. In addition 
to providing item and respondent parameters, the Rasch model estimation proce-
dure provides information on the goodness of fit between empirical parameter 
estimates and the measurement model via infit values (see Linacre, 2010). Infit 
values for an item between 0.5 and 1.5 indicate that the item fits well with the other 
items on the test.

One intuitive description of a Rasch model is as a probabilistic Guttman scalo-
gram. It integrates the difficulty hierarchy of the Guttman model with a bit more 
flexibility: The Rasch model is a probabilistic one, which is consistent with a model 
of human understanding that allows for different types of understandings to coexist 
at the same time (e.g., Siegler, 1996). One of the advantages of the model is that it 
uses empirical results to place items on a true continuum. Hence, our construct map 
is only the conceptual skeleton upon which our model is built. Once the empirical 
data are used to add substance to the skeleton, those data can be used to seamlessly 
cover all four levels of the map. These empirical estimates, along with the fit scores, 
can be used to address our primary concerns about the variability of children’s 
understandings and about whether or not some basic algebra items can properly be 
grouped with other items that measure understanding of the equal sign.

Because equivalent groups took the two forms of the assessment, we were able 
to use a single IRT model to estimate item difficulty and respondent ability across 
the forms (Kolen & Brennan, 2004). Indicators confirmed the baseline equivalence 
of the knowledge of the equal sign by the children who completed the two forms. 
The distribution of forms was even within each grade level, and groups were also 
statistically equivalent in mean age (Form 1 = 10.3 years, Form 2 = 10.2 years) and 
mean grade (Form 1 = 4.0, Form 2 = 3.9).

RESULTS

In presenting the results, we first briefly discuss evidence for the reliability and 
validity of the assessment, which supports the feasibility of measuring all the items 
on the same scale. Next, we describe how our method can illustrate the variability 
in children’s equal-sign knowledge. Finally, we provide evidence for the importance 
of equal-sign knowledge for some basic algebraic competence.

Evidence for Reliability and Validity—A Single Construct Model

Internal consistency, as assessed by Cronbach’s a, was high for both forms of the 
assessment (Form 1 = .93; Form 2 = .94), providing support for the reliability of 
the assessment. Multiple measures provided evidence for the validity of our assess-
ment. As discussed previously, four mathematics education experts rated the items, 
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providing evidence for face validity of the test content. The four experts rated nearly 
all the test items as ranging from important (rating of 3 out of 5) to essential (rating 
of 5 out of 5) items for tapping knowledge of equality, with a mean rating of 4.3.

We evaluated whether our construct was reasonably characterized as tapping a 
single dimension. Within an IRT framework, the unidimensionality of an assess-
ment is often checked by using a principle components analysis (PCA) of the 
residuals after fitting the data to the Rasch model (Linacre, 2010). This analysis 
attempts to partition unexplained variance into coherent factors that may indicate 
other dimensions. The Rasch model accounted for 60% of the variance in our data 
set. A PCA on the residuals indicated that the largest secondary factor accounted 
for 2% of the total variance (eigenvalue of 3.2), corresponding to 5% of the unex-
plained variance. The secondary factor was sufficiently dominated by the Rasch 
dimension to justify the assumption of unidimensionality (Linacre, 2010). This 
confirmed that all items on the assessment—including the algebraic ones—
substantially loaded on the same construct. Each item tapped children’s under-
standing of the equal sign as an indicator of mathematical equality.

Next, as a check on the internal structure of the assessment, we evaluated whether 
our a priori predictions about the relative difficulty of items were correct (Wilson, 
2005). Recall that when creating the assessment, we selected items to tap knowl-
edge at each of the four levels on our construct map. The hypothesized difficulty 
level for each item (ordinal 1, 2, 3 or 4; see Appendix B) correlated highly with the 
empirically derived item difficulty, Spearman’s !(62) = .91, p < .01. We also used 
an item-respondent display called a Wright map to help evaluate our difficulty 
predictions (Wilson, 2005). The Wright map allows for quick visual inspection of 
whether our construct map correctly predicted relative item difficulties (Figure 2). 
In brief, a Wright map consists of two columns, one for respondents and one for 
items. On the left column are respondents (i.e., participants). Those with the highest 
ability scores on the construct are located near the top of the map, whereas those 
with the lowest scores are located near the bottom. Assessment items are located 
on the right column. The most difficult items are located near the top of the map, 
and the least difficult ones are near the bottom. The vertical line between these two 
columns indicates the scale for both the ability and difficulty parameter estimates 
measured in logits (i.e., log-odds units). Interpreting logits involves knowing that 
the average of the item distribution was set to 0 logits; negative scores indicate 
items that were easier than average, and positive scores indicate items that were 
more difficult than average. The chief advantages of the logit scale are (a) it is an 
interval-level scale that can be properly used for parametric analysis, and (b) it can 
be used to calculate the probability that the average participant of a given ability 
level will be successful on an item of a particular difficulty. The Wright map shown 
in Figure 2 is condensed to represent the selected items discussed below. The full 
Wright map is available from the authors upon request.

As can be seen on the Wright map, the items we had categorized as Level 4 items 
were indeed the most difficult items (i.e., they clustered near the top with difficulty 
scores greater than 0); the items we had categorized as Levels 1 and 2 items were 
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Figure 2. The Wright map. Each “#” represents two respondents, and each “.” represents 
one respondent. Numbers on the vertical axis represent item difficulties and children’s 
ability estimates in logits. M = mean, S = standard deviation, and T = two standard  
deviations.
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indeed fairly easy items (i.e., clustered near the bottom with difficulty scores less 
than –1); and Level 3 items fell in between. Overall, the distribution of items on 
the Wright map supported our hypothesized levels of knowledge, progressing in 
difficulty from a rigid operational view at Level 1 to a comparative relational view 
at Level 4. After confirming that items were clustered as expected, we added hori-
zontal lines on the Wright map corresponding to approximate cut points between 
levels based on empirically observed clustering. We added these lines to aid discus-
sion, but it should be remembered that the construct is at root a continuous measure 
and that speaking in terms of levels is merely a convention to facilitate discussion.

We also found that children’s ability levels behaved as expected. First, the ability 
estimates of individual children were highly correlated with grade level  
r (224) = .72, p < .01. Second, the correlation between the TCAP (Tennessee 
Comprehensive Assessment Program) mathematics scores for children in Grades 
3–6 and their ability estimates was also high r (170) = .70, p < .01. This positive 
correlation between our assessment and a general standardized mathematics 
assessment provides some evidence of convergent validity.

The current results, collected from a new population in a public school district, 
replicate our original findings of adequate psychometric properties for our assess-
ments (Rittle-Johnson et al., 2011). These findings provide strong evidence for the 
reliability and validity of our assessment of equal-sign knowledge. In particular, 
they show that different item types can be measured on a single scale, with a hier-
archy of item difficulty that matches our construct map.

Elaborating the Variability in Children’s Knowledge

A major goal of this study was to add resolution to our conception of the vari-
ability in children’s understandings of the equal sign as an indicator of mathemat-
ical equality. To illustrate this contribution, we first discuss how the current model 
augments the discussions put forth by studies that focus on individual types of 
items. We exploit the fact that individual children’s ability scores, as estimated by 
the Rasch model, can be used to find specific probabilities that a given child will 
be successful on a given item. Specifically, we can calculate the probability of any 
participant’s success on any given item from log-odds units by using the equation 

Pr( ) ,
( )

success
e d

=
+ − −

1

1 !

where "  is a participant’s ability estimate, and d is the item difficulty estimate. This 
is a powerful analytical tool, because it allows us to take a single measure (a child’s 
ability score) and use it to predict the types of items with which a child is likely to 
struggle, without the usual need for resource-intensive item-by-item error analysis. 
It is important to note that neither a participant’s ability score nor an item’s difficulty 
is interpretable on its own; it is the distance between the two, "  – d, that yields the 
probability of an individual’s success. The contrasts between these probability 
estimates for different children will be used to help provide a detailed picture of 
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the variability in children’s knowledge of the equal sign. To aid interpretation, we 
selected 6 representative ability estimates—corresponding to high and low scores 
within Levels 2, 3, and 4—for the purposes of illustration. Table 3 lists the prob-
abilities that children at each of these various ability estimates will generate correct 
answers for selected items (see Appendix A for a list of all items on Form 2 of the 
assessment). The interested reader can select given items, using the equation above 
to further explore the likelihood that children with different ability estimates will 
correctly solve particular items.

Open-equation-solving items. Several researchers have suggested that children’s 
difficulties with solving open equations should be dependent upon the formats of 
those open equations (Falkner et al., 1999; Weaver, 1973), and the levels of our 
construct map are based in part upon this idea. The more nonstandard or unfamiliar 
the format, the more difficult the item should be. Our earlier study (Rittle-Johnson 
et al., 2011) was the first to quantify the differences in difficulty among nonstan-
dard equations of different formats. Due to the psychometric focus of that study, 
however, the practical implications of the findings were rather opaque. Here, we 
have replicated the findings, and subsequently we discuss what they mean for our 
picture of children’s emerging knowledge of the equal sign.

The simplest nonstandard open-equation item was ! + 5 = 9. This was expected 
to be the case because this item still adhered to standard operations-equals-answer 
format, and was classified at Level 1. As shown in Table 3, even the lowest 
performers were able to solve this item correctly over 90% of the time.

The next most difficult items were those with all operations on the right of the 
equal sign. Although children on the upper half of the ability continuum showed 
complete mastery for these items, children of lesser ability were substantially less 
likely to solve these items correctly than items in operations-equals-answer format. 
For instance, low Level 2 children solved ! + 5 = 9 correctly 92% of the time, but 
solved 8 = 6 + ! correctly only 50% of the time.

Finally, items became even more difficult when they involved operations on both 
sides of the equal sign. For instance, ! + 2 = 6 + 4 was considerably more difficult 
than ! + 5 = 9 for all but the most skilled children. Correct performance for low 
Level 2 children dropped to 10% for this item. Although low Level 3 children had 
largely mastered solving equations with operations on the right, they were expected 
to get this item correct only 38% of the time. Interestingly, the somewhat longer item 
7 + 6 + 4 = 7 + ! was of nearly identical difficulty despite the fact that the item 
involves an extra addend and an extra addition sign. As predicted by our construct 
map, the placement of operations relative to the equal sign was a key factor affecting 
difficulty, whereas the number of addends and whether the unknown was on the left 
or right side had little impact on difficulty. In summary, equations with all operations 
on the right were generally more difficult than equations with all operations on the 
left (the distinction between Level 1 and Level 2), and equations with operations on 
both sides were generally more difficult than equations with operations only on a 
single side (the distinction between Level 2 and Level 3).
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Equation-structure items. We expected equation format to have a similar impact 
on the difficulty of rating equations as true or false (see Behr et al., 1980). Indeed, 
equations with operations limited to the right side, such as 4 = 4 + 0, though 
nonstandard, were not as difficult for children to grasp as noncanonical equations 
with no operators (e.g., 8 = 8) or those with operations on both sides, such as 7 + 
6 = 6 + 6 + 1 (see Table 3). High Level 2 children largely accepted 4 = 4 + 0 as true 
(78% correct), but fell to chance for 8 = 8 (46% correct) and rarely accepted 7 + 6 
= 6 + 6 + 1 as true (28% correct). High Level 3 performers exhibited clear mastery 
for 4 = 4 + 0 (94%) and were correct the vast majority of the time for 8 = 8 (80%). 
Their performance also declined a bit for 7 + 6 = 6 + 6 + 1, the item with operators 
on both sides of the equal sign (64%).

Overall, the data suggest that it is important to consider which nonstandard 
formats children accept. Some nonstandard formats are much more difficult than 
others. Moreover, it appears that equation format affects difficulty similarly for 
both open-equation and equation-structure item types. For instance, as shown in 
Table 3, items with all operations on the right were of similar difficulty for both 
open-equation and equation-structure item types (e.g., 8 = 6 + ! and 4 = 4 + 0). 
Problems with operations on both sides were also of similar difficulty across item 
types and proved to be more difficult than problems with operations on the right 
(e.g., 7 + 6 + 4 = 7 + ! and 7 + 6 = 6 + 6 + 1). 

Equal-sign items. We also were interested in how children’s abilities to give a 
relational definition of the equal sign was related to their success on other items 
designed to tap their explicit knowledge of the equal sign, as well as on open-equation 
and equation-structure items. First, we should note that requiring children to provide 
a relational definition of the equal sign was more difficult than other equal-sign items. 
Recognizing a relational definition of the equal sign from a list—as opposed to 
generating one—was much easier. For instance, asking children to rate the phrase 
“The equal sign means two amounts are the same” as a good or not good definition 
was much easier than generating a relational definition of the equal sign (see Table 3).

Providing a relational definition of the equal sign proved to be very difficult for 
many children. For example, both high Level 3 children (at the beginning relational 
level) and high Level 2 children (at the flexible operational level) were unlikely to 
offer a relational definition of the equal sign (20% and 1% probabilities, respec-
tively; see Table 3). Similar performance on this item, however, stands in stark 
contrast to the differences in performance these same children demonstrate on other 
items. For instance, when asked to evaluate the equation 4 = 4 + 0 as true or false, 
the high Level 3 child is successful 93% of the time, whereas the low Level 2 child 
is expected to be successful only 47% of the time. Similarly, when asked to solve 
! + 2 = 6 + 4, high Level 3 children are successful 64% of the time, despite their 
general failure to generate a relational definition of the equal sign. By contrast, the 
low Level 2 children are expected to succeed on this item only 10% of the time. 
These examples show how including diverse measures in one hierarchy allows our 
assessment to map variability that might otherwise remain unnoticed.
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Our data also helped chart the variability within the group of children who 
succeeded at offering a relational definition of the equal sign. In our sample,  
29 children (13% of the sample) showed mastery for generating a relational defini-
tion of the equal sign (difficulty = 2.51). We defined mastery as receiving ability 
estimates that were at least one logit above the item difficulty (i.e., the point at 
which children are expected to succeed on the item at least 73% of the time). Of 
these master definers, 13 children scored more than two logits higher than the 
difficulty of the item (i.e., they were expected to get the item correct at least 88% 
of the time). These 13 most skilled children were more likely than the other master 
definers to succeed on more difficult items asking them to provide an explanation 
using explicit arithmetic properties of equality. Take, for instance, performance on 
the item that asks, “76 + 45 = 121 is true. Is 76 + 45 – 9 = 121 – 9 true or false? 
How do you know?” (difficulty = 3.41). The more highly skilled subgroup of master 
definers was successful on this item roughly twice as often as the less skilled 
subgroup of master definers (29% vs. 52%). Thus, there was even detectible vari-
ability within the mastery-level children.

Finally, providing a relational definition of the equal sign did not necessarily mean 
that children had abandoned an operational view of the equal sign. Whereas 26% of 
our sample could offer a relational definition, only 10% of our sample—or roughly 
2 out of every 5 relational definers—provided only a relational definition. The 
remaining children offered alternative operational interpretations alongside their 
relational definitions. This was consistent with our construct map, which posits that 
a relational view of the equal sign can coexist with other less sophisticated views. 
We could not include both codings (i.e., strictly relational vs. relational alongside 
operational) in our Rasch model due to the model’s requirements for item indepen-
dence, so we do not have a difficulty estimate for the stricter coding of definitions.

Evidence for the Importance of Equal-sign Knowledge

Equations with letters as variables. We evaluated whether the items involving 
letters as variables loaded on the construct of equal-sign knowledge, as expected. 
Each of the three items featuring letters as variables (see Table 3) was well aligned 
with the construct, both according to indicators from classical test theory and 
measures specific to the Rasch model. Item total correlations were above .45, and 
infit statistics of model fit were within acceptable ranges of 0.5 to 1.5 for each of 
the items. This is an important point: the items using letters as variables fit the 
Rasch model as well as other items typically used to study knowledge of the equal 
sign. This suggests that this subset of algebraic items relies, in part, on knowledge 
of the equal sign.

The three items were not of equal difficulty. Instead, difficulty varied as the 
format of the item changed. The item 13 = n + 5 received a difficulty rating of –.75, 
making it a mid Level 3 difficulty item. Use of a letter as a variable appeared to 
make this item more difficult than other open-equation items with a similar format 
and no letter variable. For example, 8 = 6 + ! was significantly easier, with a 
difficulty of −2.71 (Table 3). Even though use of the letter n is logically similar to 
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the use of the blank for representing the unknown, it appears that the use of a letter 
renders the item more difficult.

The item c + c + 4 = 16, on the other hand, was a low Level 4 item. Even though 
all operations were on the left, this item proved more difficult than the most diffi-
cult open-equation-solving items on the assessment (i.e., 43 + ! = 48 + 76, diffi-
culty = 1.08). This is presumably because the item involved multiple instances of 
the unknown, demanding more novel application of the concept of equality 
(Carpenter et al., 2003).

Finally, m + m + m = m + 12 emerged as a high difficulty Level 4 item (difficulty 
= 2.67). This item involved both multiple instances of a letter as variable and 
operations on both sides of the equal sign. In fact, it was the most difficult of all 
assessment items not requiring an explanation. Only 11% of low Level 4 children 
were expected to solve this item properly, whereas 72% of them are expected to 
solve 7 + 6 + 4 = 7 + ! correctly (see Table 3). It was of even higher difficulty than 
the item asking for a verbal definition of the equal sign.

Three main points summarize our findings about items involving letters as vari-
ables. First, items with letters as variables fit our model well, suggesting that they 
tapped the construct of equal-sign knowledge. Second, items with letters as vari-
ables were more difficult than similarly formatted items without letters as variables. 
Third, children with higher overall knowledge of the equal sign tended to perform 
better on these less familiar types of problems.

Items testing advanced relational thinking. The advanced relational thinking 
items were intended to go beyond testing procedural proficiency in order to illus-
trate the link between equal-sign knowledge and whether or not children could 
express generalizations about properties of equality and the transformations they 
allow in natural language. Our six advanced relational thinking items were well 
aligned with the construct. All but one had infit statistics between 0.5 and 1.5 and 
all but one had an item total correlation above .2. Items testing for explicit verbal 
knowledge of properties of equality fit the Rasch model nearly as well as items 
more typically used to study knowledge of the equal sign.

As can be seen on the Wright map (Figure 2), these items were the most difficult 
items on the assessment. The two items in Figure 3 illustrate this point. Even high 
Level 4 children, who were expected to define the equal sign relationally 90% of 
the time, were expected to answer these items correctly only 83% and 57% of the 
time, respectively (see comparative difficulty levels in Table 3). As predicted by 
our construct map, it appears that articulating knowledge about the transformations 
that preserve equality represents an advance in equal-sign knowledge over inter-
preting the equal sign in a relational manner. These items help to distinguish among 
children who all successfully provided relational definitions of the equal sign.

Consider the explanations that children gave for these items. Some children could 
evaluate the truth of these equations via procedural routes, but nonetheless could 
not explain the logical shortcuts that proceed from relational thinking (and thus 
were scored as 0s). For instance, the two children highlighted in Figure 3 correctly 
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recognized that the expressions are equal but used resource-intensive solve-and-
compare strategies to justify their answers. Although the solve-and-compare 
strategy does require that children realize—on some level—that the equal sign 
expresses the interchangeability of each side of an equation, this strategy is not 
very efficient and does not capture comparative relational thinking (Level 4).

Another example of such advanced knowledge of the equal sign is reflected by 
answers that demonstrate use of compensation strategies, as in Figure 5. In this 

Figure 3. Children’s use of the inefficient solve-and-compare strategy.
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example, the child has used the fact that 87 is two less than 89, which means that 
the addend coupled with the 87 must be two more than the one coupled with 89 in 
order to preserve equality. Carpenter et al. (2003) have argued that such use of 
compensation strategies instead of full calculation is an indicator of relational 
thinking: These strategies are reflective of the realization that the equal sign repre-
sents a relation between the two sides of the equation and that a relation among the 
numbers in the two expressions makes it unnecessary to carry out the calculations.

In summary, items that required explaining transformations that preserve equality 
fit our model of equal-sign knowledge as laid out in our construct map. The fit of 
these items, despite the fact that they are much less frequently used to measure 
knowledge of the equal sign, helps to illustrate an important feature of our method: 
It can be used to explore new potential items that measure knowledge of the equal 
sign. Kieran (1981) has previously suggested that failures on some more advanced 
mathematical items may stem from incorrect conceptions of the equal sign. As more 
candidate items are generated, our method can assess whether or not these new 
items rely, at least in part, on knowledge of the equal sign, and if so, where they 
fall in the hierarchy of difficulty.

DISCUSSION

Several decades of research have catalogued the difficulties that U.S. elementary 
school children have with understanding the equal sign as an indicator of mathe-
matical equality (e.g., Alibali, 1999; Baroody & Ginsburg, 1983; Behr et al., 1980; 
Falkner et al., 1999; Jacobs et al., 2007; Li et al., 2008; Lindvall & Ibarra, 1980; 
Matthews & Rittle-Johnson, 2009; McNeil, 2007; Powell & Fuchs, 2010; Weaver, 
1973). The current study sought to add resolution to that picture by placing previ-
ously incommensurable measurement items onto a single scale. Our findings reaf-
firmed our past findings that diverse items can indeed be integrated onto a single 
scale and provided further support for the validity of our assessment and of our 
construct map for knowledge of the equal sign. Moreover, because we used a new 
sample, our findings provide early evidence for the generalizability of our construct 
map to other children who have not received specialized instruction on the equal 
sign. Below, we discuss how our assessment helps expand our abilities to reveal 
children’s knowledge of the equal sign, both in terms of describing variability and 
in terms of the construct’s link to some basic algebra items. We then discuss some 
of the study’s limitations and ways that the assessment might be improved.

Elaborating the Variability in Children’s Knowledge

Our assessment augments the information gleaned from any single item type 
measuring equal-sign knowledge. First, our data clearly demonstrate that not all 
nonstandard equation formats are equally challenging. As detailed in our construct 
map, the more that an equation varies from the standard a + b = c format, the more 
difficult it is likely to be. Difficulty increases as form changes from all operations 
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on the left side to all operations on the right side, becoming most difficult when 
operations are included on both sides of the equal sign. Although the comparative 
difficulties of these problems have been suggested in several studies (e.g., Baroody 
& Ginsburg, 1983; Carpenter et al., 2003; Weaver, 1973), differences in perfor-
mance according to item format have rarely been quantified. Our findings confirm 
the importance of equation format by assessing a wide range of item formats and 
revealing that the effects of item format were similar for open-equation-solving 
items and equation-structure items. They also indicate that differences in item 
difficulty can be quite substantial.

Second, we were able to compare the difficulties of different types of items all 

Figure 4. Recognition that performing the same operation on both sides preserves equality.

Figure 5. Use of compensation strategy demonstrates the ability to use equality-preserving 
transformations to reduce the need for computation.
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thought to tap understanding of the equal sign, because our assessment measures 
difficulty on an interval scale. Focusing across rows in a given column in Table 3 
allows us to compare the differences in the probabilities of success on different 
items for children of a given ability level. The table helps to highlight some inter-
esting differences. For instance, consider low Level 4 children. Table 3 clearly 
reveals that providing a relational definition of the equal sign is typically much 
more difficult than working with equations with operations on both sides, be it 
solving an open equation or accepting nonstandard formats as valid. The ability to 
accept and solve equations in nonstandard formats and the ability to give a rela-
tional definition of the equal sign lie substantially far apart on the scale of 
increasing knowledge of the equal sign. 

This point illustrates a more general feature of our model in that it helps make 
clear exactly how wide the variability is among children who might otherwise be 
grouped together based on similar performance on a particular item. For example, 
even though 75% of our sample failed to define the equal sign relationally, we could 
easily detect differences within this group because of the nature of our assessment 
and measurement scale.

Link Between Knowledge of the Equal Sign and Algebra 

Our assessment approach also allowed us to explicitly map some basic algebraic 
items onto items commonly accepted as measuring knowledge of the equal sign. 
Simple algebraic items involving letters as variables (e.g., c + c + 4 = 16) and 
advanced relational thinking items requiring explanation of equality-preserving 
transformations loaded heavily on our equal-sign knowledge construct (i.e., the 
psychometric properties of the items indicated that they fit well with the other 
items). Children with more advanced knowledge of the equal sign were more likely 
to solve both types of algebraic items correctly. Importantly, this effect for equal-
sign knowledge prevailed even though these children presumably had no more 
experience with letters as variables or advanced relational thinking items than their 
peers in the same classrooms. These findings provide important empirical evidence 
to support claims that young children’s knowledge of the equal sign supports alge-
braic thinking (Knuth et al., 2006; Lindvall & Ibarra, 1980; MacGregor & Stacey, 
1997; Steinberg et al., 1991).

Focusing on equations involving letters as variables, analysis of performance 
suggests two trends. First, the use of letters as variables may have added difficulty 
when compared to items using blanks, even though they were logically similar. 
Second, it appears that equation format seems to have influenced difficulty with 
equations involving letters as variables in much the same way that it influenced 
difficulty for equations that involved no letters as variables, namely, equations with 
operations on both sides were more difficult for children to solve than those that 
involved operators on a single side only. The use of multiple instances of a given 
unknown, which is only possible with letters as variables, also increased item 
difficulty.

Performance data for advanced relational reasoning items added even more 



244 Children’s Understanding of the Equal Sign

nuance to the picture. Providing verbal explanations for the equality-preserving 
transformations on equations using only numbers proved to be more demanding—
sometimes much more so—than was solving equations using relatively unfamiliar 
letters as variables. This highlights the fact that procedural competence with math-
ematical equality can sometimes precede ability to articulate rules governing the 
domain (Rittle-Johnson, Siegler, & Alibali, 2001).

Limitations

Our assessment and construct map have been developed with two different 
samples of elementary school children. In both samples, schools were using tradi-
tional mathematics curricula that did not focus explicitly on the equal sign or on 
mathematical equality. Children’s operational view of the equal sign is largely 
thought to result from repeated exposure to equations in a standard operations-
equals-answer format (Alibali et al., 2007; Falkner et al., 1999; Li et al., 2008; 
McNeil & Alibali, 2005a; Seo & Ginsburg, 2003). Children exposed to multiple 
equation formats from early on infrequently develop an operational view of the 
equal sign, demonstrating more facility with the concept of equality earlier (Li et 
al., 2008). Thus, our construct map may apply only to children from similar educa-
tional backgrounds. For example, we might expect the construct map to look 
different for a population of Chinese elementary school students or for students 
using a curriculum focused on exposing children to varied equation formats (e.g., 
Wynroth’s 1975 curriculum studied by Baroody & Ginsburg, 1983). With wider 
scale testing, we can investigate the extent to which our construct map generalizes 
across different student populations.

A second limitation of the current study is that it relies on children’s written 
responses on a paper-and-pencil assessment. Children likely have knowledge that 
is not revealed on paper-and-pencil tests. For example, Jacobs et al. (2007) used a 
student interview to reveal whether children used relational thinking to solve some 
of the problems on the written test, including a prompt to encourage use of rela-
tional thinking. We incorporated these prompts for relational thinking in our written 
assessment, but children often will say more than they will write. Integrating items 
from a structured interview with the written assessment would help to reveal the 
impact of response format on performance.

Finally, our assessment does not systematically measure other constructs that 
may be required for the solution of any given item. Certainly, each individual item 
requires multiple types of knowledge or skills (e.g. addition skills, knowledge of 
commutativity). Our model, however, was not concerned with whether or not any 
individual item loaded on several constructs. It was instead designed to investigate 
whether the items in toto loaded heavily on the construct of equal-sign knowledge. 
Thus, our assessment and construct map have little to say about other constructs 
that may be involved for individual items on the assessment. Although these issues 
were beyond the scope of our project, future research could identify additional 
mathematics skills and how they relate to success on our measure.
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The Power of the Method

Our final point is about method. Our intent was to build upon prior research in 
order to gain more leverage from the items typically used to measure knowledge 
of the equal sign. Our contribution, therefore, is first and foremost one of method. 
Science has historically been constrained by the limits of method (Kuhn, 1996). 
We have presented evidence that suggests that our current science regarding under-
standing of the equal sign—and by extension, of mathematical equality—has 
similarly been limited by method. The use of diverse items without a unifying 
metric does not allow us to take advantage of the full leverage that an integrated 
assessment affords.

Our use of IRT in the context of Wilson’s construct-modeling approach provides 
a model for the application of a powerful psychometric method for designing 
measurements of mathematical constructs. Research in mathematics education is 
full of potential for practical uses of this approach. In our case, we chose to use the 
method due to the lack of an integrated assessment of equal-sign knowledge. In 
another case, Clements, Sarama, and Liu (2008) used the approach to construct an 
assessment for measuring mathematics ability in children aged 3–5. The authors 
found that existing measures such as the Woodcock-Johnson III had not been vali-
dated for children in this young age range. They consulted experts, developed a 
construct map, and designed items to measure the construct. In the final analysis, 
the construct-based approach holds potential to help fill gaps in the field wherever 
measures are wanting or nonexistent.

In summary, we demonstrated how our new assessment, built using a construct 
modeling approach, stands to enrich our knowledge of children’s understanding of 
the equal sign—and by extension, the concept of mathematical equality. This 
approach allows us (a) to compare difficulty across item types, (b) to improve the 
resolution of our pictures of both item difficulty and children’s proficiencies, and 
(c) to expand our assessment flexibly to include more advanced items that demand 
equal-sign knowledge. Moreover, it may eventually allow us to expand the difficulty 
level upward to find places at which more advanced students and adults falter in 
their understanding or activation of their knowledge of equal sign as an indicator 
of mathematical equality (see Kieran, 1981; MacGregor & Stacey, 1997; McNeil 
& Alibali, 2005a).

REFERENCES

Adelman, C. (2006). The toolbox revisited: Paths to degree completion from high school through col-
lege. Washington, DC: U.S. Department of Education.

Alibali, M. W. (1999). How children change their minds: Strategy change can be gradual or abrupt. 
Developmental Psychology, 35, 127–145. doi:10.1037/0012-1649.35.1.127

Alibali, M. W., Knuth, E. J., Hattikudur, S., McNeil, N. M., & Stephens, A. C. (2007). A longitudinal 
examination of middle school students’ understanding of the equal sign and equivalent equations. 
Mathematical Thinking and Learning, 9, 221–247. doi:10.1080/10986060701360902

Bailey, R., Day, R., Frey, P., Howard, A. C., Hutchens, D. T., McClain, K., . . . Willard, T. (2004). Math-
ematics: Applications and concepts: Course 2. New York, NY: Glencoe/McGraw-Hill.

Baroody, A. J., & Ginsburg, H. P. (1983). The effects of instruction on children’s understanding of the 



246 Children’s Understanding of the Equal Sign

“equals” sign. The Elementary School Journal, 84, 199–212. doi:10.1086/461356
Behr, M., Erlwanger, S., & Nichols, E. (1980). How children view the equals sign. Mathematics Teach-

ing, 92, 13–15.
Blanton, M., Levi, L., Crites, T., & Dougherty, B. J. (2011). Developing essential understandings of 

algebraic thinking for teaching mathematics in grades 3–5 (R. M. Zbiek, Series Ed., & B. J. Dough-
erty, Vol. Ed.). Reston, VA: National Council of Teachers of Mathematics.

Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human 
sciences. Mahway, NJ: Erlbaum.

Cajori, F. (1928). A history of mathematical notations. LaSalle, IL: Open Court.
Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic 

and algebra in elementary school. Portsmouth, NH: Heinemann.
Clement, J. (1982). Algebra word-problems solutions: Thought processes underlying a common mis-

conception. Journal for Research in Mathematics Education, 13, 16–30. doi:10.2307/748434
Clements, D. H., Sarama, J. H., & Liu, X. H. (2008). Development of a measure of early mathematics 

achievement using the Rasch model: The Research-Based Early Maths Assessment. Educational 
Psychology, 28, 457–482. doi:10.1080/01443410701777272

Cobb, P. (1987). An investigation of young children’s academic arithmetic contexts. Educational Stud-
ies in Mathematics, 18, 109–124. doi:10.1007/BF00314722

De Corte, E., & Verschaffel, L. (1981). Children’s solution processes in elementary arithmetic problems: 
Analysis and improvement. Journal of Educational Psychology, 73, 765–779. doi:10.1037/0022-
0663.73.6.765

Saussure, F. de (1959). Course in general linguistics (C. Bally & A. Sechehaye with A. Riedlinger, 
Eds.; W. Baskin, Trans.). New York, NY: Mc-Graw-Hill.

Education Consumers Foundation. (2010). Correcting TCAP grade inflation: What to expect in 2010. 
Retrieved from http://www.education-consumers.org/TCAP_NAEP.htm

Falkner, K. P., Levi, L., & Carpenter, T. P. (1999). Children’s understanding of equality: A foundation 
for algebra. Teaching Children Mathematics, 6, 232–236.

Ginsburg, H. (1977). Children’s arithmetic: The learning process. New York, NY: D. Van Nostrand.
Hill, H. C., & Shih, J. C. (2009). Examining the quality of statistical mathematics education research. 

Journal for Research in Mathematics Education, 40, 241–250.
Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L., & Battey, D. (2007). Professional development 

focused on children’s algebraic reasoning in elementary school. Journal for Research in Mathemat-
ics Education, 38, 258–288.

Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 
12, 317–326. doi:10.1007/BF00311062

Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of 
research on mathematics teaching and learning (pp. 390–419). New York: NY: Macmillan.

Knuth, E. J., Stephens, A. C., McNeil, N. M., & Alibali, M. W. (2006). Does understanding the equal 
sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37, 
297–312. doi:10.1207/s1532690xci2403_3

Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking: Methods and practices (2nd 
ed.). New York, NY: Springer.

Kuhn, T. S. (1996). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
Li, X., Ding, M., Capraro, M. M., & Capraro, R. M. (2008). Sources of differences in children’s under-

standings of mathematical equality: Comparative analysis of teacher guides and student texts in China 
and the United States. Cognition and Instruction, 26, 195–217. doi:10.1080/07370000801980845

Linacre, J. M. (2010). A user’s guide to Winsteps ministep Rasch-model computer programs. Retrieved 
from http://www.winsteps.com/winman/index.htm?copyright.htm

Lindvall, C. M., & Ibarra, C. G. (1980). Incorrect procedures used by primary grade pupils in solv-
ing open addition and subtraction sentences. Journal for Research in Mathematics Education, 11, 
50–62. doi:10.2307/748732

MacGregor, M., & Stacey, K. (1997). Students’ understanding of algebraic notation: 11–15. Educa-
tional Studies in Mathematics, 33, 1–19.



Matthews, Rittle-Johnson, McEldoon, and Taylor 247

Maletsky, E. M., Andrews, A. G., Bennett, J. M., Burton, G. M., Luckie, L. A., McLeod, J. C., . . . 
Scheer, J. K. (2005). Harcourt Math. Orlando, FL: Harcourt.

Matthews, P., & Rittle-Johnson, B. (2009). In pursuit of knowledge: Comparing self-explanations, 
concepts, and procedures as pedagogical tools. Journal of experimental child psychology, 104, 
1–21. doi:10.1016/j.jecp.2008.08.004

McNeil, N. M. (2007). U-shaped development in math: 7-year-olds outperform 9-year-olds on equiva-
lence problems. Developmental Psychology, 43, 687–694. doi: 10.1037/0012-1649.43.3.687

McNeil, N. M. (2008). Limitations to teaching children 2 + 2 = 4: Typical arithmetic problems can hin-
der learning of mathematical equivalence. Child Development, 79, 1524–1537. doi: 10.1111/j.1467-
8624.2008.01203.x

McNeil, N. M., & Alibali, M. W. (2005a). Knowledge change as a function of mathematics experi-
ence: All contexts are not created equal. Journal of Cognition and Development, 6, 285–306. doi: 
10.1207/s15327647jcd0602_6

McNeil, N. M., & Alibali, M. W. (2005b). Why won’t you change your mind? Knowledge of opera-
tional patterns hinders learning and performance on equations. Child Development, 76, 883–899. 
doi:10.1111/j.1467-8624.2005.00884.x

McNeil, N. M., Fyfe, E. R., Petersen, L. A., Dunwiddie, A. E., & Brletic-Shipley, H. (2011). Benefits 
of practicing 4 = 2 + 2: Nontraditional problem formats facilitate children’s understanding of math-
ematical equivalence. Child Development, 82, 1620–1633. doi:10.1111/j.1467-8624.2011.01622.x

McNeil, N. M., Grandau, L., Knuth, E. J., Alibali, M. W., Stephens, A. C., Hattikudur, S., & Krill, D. 
E. (2006). Middle-school students’ understanding of the equal sign: The books they read can’t help. 
Cognition and Instruction, 24, 367–385. doi:10.1207/s1532690xci2403_3

Molina & Ambrose (2006) Reference to come. <This ref. is missing- see p 5.>
Moses, R. P., & Cobb, C. E., Jr. (2001). Radical equations: Math literacy and civil rights. Boston, 

MA: Beacon Press.
National Council of Teachers of Mathematics & Mathematical Sciences Education Board, & National 

Research Council. (1998). The nature and role of algebra in the K–14 curriculum: Proceedings of 
a national symposium. Washington, DC: National Academy Press.

National Research Council. (1998). The nature and role of algebra in the K-14 curriculum. Washing-
ton, DC: National Academy Press.

National Research Council. (2001). Adding it up: Helping children learn mathematics (J. Kilpatrick, J. 
Swafford, & B. Findell, Eds.). Washington, DC: National Academies Press.

Perry, M. (1991). Learning and transfer: Instructional conditions and conceptual change. Cognitive 
Development, 6, 449–468. doi:10.1016/0885-2014(91)90049-J

Powell, S. R., & Fuchs, L. S. (2010). Contribution of equal-sign instruction beyond word-problem 
tutoring for third-grade students with mathematics difficulty. Journal of Educational Psychology, 
102, 381–394. doi:10.1037/a0018447

Rasch, G. (1993). Probabilistic models for some intelligence and attainment tests. Chicago, IL: MESA 
Press. (Original work published 1960)

Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct instruction. Child 
Development, 77, 1–15. doi:10.1111/j.1467-8624.2006.00852.x

Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: 
Does one lead to the other? Journal of Educational Psychology, 91, 175–189. doi:10.1037/0022-
0663.91.1.175

Rittle-Johnson, B., Matthews, P. G., Taylor, R. S., & McEldoon, K. L. (2011). Assessing knowledge 
of mathematical equivalence: A construct-modeling approach. Journal of Educational Psychology, 
103, 85–104. doi:10.1037/a0021334

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and 
procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–
362. doi:10.1037/0022-0663.93.2.346

Seo, K. H., & Ginsburg, H. P. (2003). “You’ve got to carefully read the math sentence . . .”: Classroom 
context and children’s interpretations of the equals sign. In A. J. Baroody & A. Dowker (Eds.), 
The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 161–188). 
Mahwah, NJ: Erlbaum.



248 Children’s Understanding of the Equal Sign

Sherman, J., & Bisanz, J. (2009). Equivalence in symbolic and nonsymbolic contexts: Benefits of solv-
ing problems with manipulatives. Journal of Educational Psychology, 101, 88–100. doi:10.1037/
a0013156

Siegler, R. S. (1996). Emerging minds: The process of change in children’s thinking. New York: NY: 
Oxford University Press.

Steinberg, R. M., Sleeman, D. H., & Ktorza, D. (1991). Algebra students’ knowledge of equivalence of 
equations. Journal for Research in Mathematics Education, 22, 112–121. 

U.S. Chamber of Commerce. (2011). Leaders and laggards: A state-by-state report card on educa-
tional effectiveness. Retrieved from http://www.uschamber.com/reportcard/2007

Warren, E. (2003). Young children’s understanding of equals: A longitudinal study. In N. Pateman, G. 
Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for 
the Psychology of Mathematics Education (Vol. 4, pp. 379–387). Honolulu, HI: PME.

Weaver, J. F. (1973). The symmetric property of the equality relation and young children’s ability to 
solve open addition and subtraction sentences. Journal for Research in Mathematics Education, 4, 
45–56. doi:10.2307/749023

Wilson, M. (2003). On choosing a model for measuring. Methods of Psychological Research, 8, 1–22.
Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, NJ: Erl-

baum.
Wittgenstein, L. (1961). Tractatus logico-philosophicus (D. F. Pears & B. F. McGuiness, Trans.). Lon-

don: Routledge.
Wittgenstein, L. (2001). Philosophical investigations (G. E. M. Anscombe, Trans.). Malden, MA: 

Blackwell.
Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educational 

Measurement, 14, 97–116. doi:10.1111/j.1745-3984.1977.tb00039.x
Wynroth, L. (1975). Wynroth math program—the natural numbers sequence. Ithaca, NY: Author.
Zhu, X., & Simon, H. A. (1987). Learning mathematics from examples and by doing. Cognition and 

Instruction, 4, 137–166. doi:10.1207/s1532690xci0403_1

Authors

Percival Matthews, Department of Psychology, 208 Haggar Hall, University of Notre Dame, Notre 
Dame, IN 46556; pmatthew@nd.edu

Bethany Rittle-Johnson, Department of Psychology and Human Development, Vanderbilt University, 
Peabody #552, 230 Appleton Place, Nashville, TN 37203; bethany.rittle-johnson@vanderbilt.edu

Katherine McEldoon, Department of Psychology and Human Development, Vanderbilt University, 
Peabody #552, 230 Appleton Place, Nashville, TN 37203; k.mceldoon@vanderbilt.edu

Roger Taylor, 464 Mahar Hall, SUNY Oswego Oswego, NY 13126; roger.taylor@oswego.edu

Accepted November 15, 2011



Matthews, Rittle-Johnson, McEldoon, and Taylor 249

APPENDIX A

Full2 Assessment Form 2
Equation Structure Items

1.  For each example, decide if the number sentence is true. In other words, does it 
make sense?

After each problem, circle True, False, or Don’t Know.

Samples:

3 + 4 = 7 True False Don’t Know

3 + 4 = 12 True False Don’t Know

a) 5 + 3 = 8 True False Don’t Know

b) 3 = 3 True False Don’t Know

c) 5 + 5 = 5 + 6 True False Don’t Know 

d) 31 + 16 = 16 + 31  True False Don’t Know 

e) 7 + 6 = 6 + 6 + 1 True False Don’t Know 

f) 6 = 6 + 0 True False Don’t Know

2.  For each example, decide if the number sentence is true. Then, explain how you 
know. 

a) 7 = 3 + 4 True False Don’t Know 

b) 6 + 4 = 5 + 5 True False Don’t Know 

3.   Without adding 67 + 86, can you tell if the number sentence below is true or false?
67 + 86 = 68 + 85. How do you know?

4. Find a number that can go in each box.
8 + 2 + = 10 + !
b) Could another number go in the boxes?  YES NO
Explain why or why not.

5. 17 + 12 = 29 is true. 
Is 17 + 12 + 8 = 29 + 8 true or false? How do you know?

6. 2 ! 3 = 6 is true. 
Is 2 ! 3 ! 4 = 6 ! 4 true or false? How do you know?

2 Some items, such as 1a, served as fillers, and were not included in the Rasch model. All scored 
items are listed in Appendix B.
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7.  Without subtracting the 7, can you tell if the number sentence below is true or 
false?
56 + 85 = 141 is true.
Is 56 + 85 – 7 = 141 – 7 true or false? How do you know?

8.  Is the number that goes in the box the same number in the following two number 
sentences?
2 ! ! = 58      8 ! 2 ! ! = 8 ! 58
How do you know?

Equal Sign Items

9. What does the equal sign (=) mean? Can it mean anything else?

10. Which of these pairs of numbers is equal to 6 + 4? Circle your answer.
(a) 5 + 5

(b) 4 + 10

(c) 1 + 2

(d) none of the above

11.  Which answer choice below would you put in the empty box to show that five 
cents is the same amount of money as one nickel? Circle your answer.  
5 cents ! One nickel
a) 5¢

b) =

c) +

d) don’t know

12. Is this a good definition of the equal sign? Circle good or not good.
a. The equal sign means the same as.        Good        Not good
b. The equal sign means add.         Good        Not good
c. The equal sign means the answer to the problem. Good  Not good

13.  Which of the definitions above is the best definition of the equal sign?  
Write a, b, or c in the box below.

14. a) Is this statement true or false?

1 dollar = 100 pennies

b) What does this equal sign mean?
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Equation Solving Items

DIRECTIONS: Find the number that goes in each box.

15. 3 + 4 = ! 

16. 4 + = !
17. 8 = 6 + !
18. 3 + 4 = !
19. ! + 2 = 6 + 4 

DIRECTIONS: On these problems, we really need you to show your math. Find 
the number that goes in each box.

20. 7 + 6 + 4 = 7 + !
21. 8 + ! = 8 + 6 + 4

22. 6 – 4 + 3 = ! + 3

DIRECTIONS: Find the number that goes in each box. You can try to find a shortcut 
so you don’t have to do all the adding. Show your work and write your answer in 
the box.

23. 898 + 13 = 896 + !

24. 43 + ! = 48 + 76

25.  Find the value of z. In other words, what value of z will make the following 
number sentence true? Circle your answer.
10 = z + 6

26. Find the value of n.
n + n + n + 2 = 17

 
27. Find the value of m.

m + m + m = m + 12
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APPENDIX B

Item Statistics for Mathematical Equivalence Assessment Form 1 
(by Hypothesized Level, in Order of Increasing Difficulty)

Hypoth-
esized 
level

Corre-
sponding 
# from 

Appendix A
Item 
type Item summarya

Expert 
rating

Item 
difficulty

1

16 Open equation 4 + ! = 8 2.75 −6.11

1c Structure
Judge “5 + 5 = 5 + 6” as 

true / false. 4.50 −3.81

10 Definition
Identify pair that is equal 

to 6 + 4. 2.75 −2.71

2

1b Structure
Judge “3 = 3” as true or 

false. 4.25 −0.55

2a Structure

Explain the judgment of 
“7 = 3 + 4”  

as true or false. 4.75 −1.27

1f Structure
Judge “6 = 6 + 0” as true 

or false. 5.00 −2.13

11 Definition

5 cents ! 1 nickel. Select 
choice that shows they are 

the same. 2.50 −2.27

17 Open equation 8 = 6 + ! 3.75 −2.71

3

12a Definition

“The equal sign means 
the same as.”

Is this a good or not 
good definition? 3.75 −0.12

25 Open equation
10 = z + 6. Find the 

value of z. 4.33 −0.88

1d Structure

Judge “31 + 16 =  
16 + 31” as true  

or false. 3.50 −0.80
a Wording of summaries does not duplicate actual wording verbatim. See Appendix A for exact wording 
of items from Form 1 of the assessment.
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Hypoth-
esized 
level

Corre-
sponding
# from 

Appendix A
Item 
type

Item 
summary

Expert 
rating

Item 
difficulty

3

19 Open equation ! + 2 = 6 + 4 5.00 −0.47

1e Structure Judge “7 + 6 = 6 + 6 + 1” 
as true or false. 4.50 −0.47

20 Open equation 7 + 6 + 4 = 7 + ! 5.00 −0.31

18 Open equation 3 + 4 = ! + 5 4.33 −0.23

22 Open equation 6 – 4 + 3 = ! + 3 4.75 0.18

2b Structure
Explain the judgment of 
“6 + 4 = 5 + 5” as true  

or false.
5.00 0.18

21 Open equation 8 + ! = 8 + 6 + 4 4.50 0.26

4

14 Definition
What does the equal sign 
mean in this statement? 
1 dollar = 100 pennies

3.33 −0.15

26 Open equation n + n + n + 2 = 17.  
Find the value of n. 4.25 0.35

13 Definition Which definition of the 
equal sign is the best? 4.25 0.76

23 Open equation 898 + 13 = 896 + !.  
Try to find a shortcut.

4.75 1.00

24 Open equation 43 + ! = 48 + 76  
Try to find a shortcut.

4.50 1.00

9 Definition What does the equal sign 
mean? 4.25 1.51
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Appendix A
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Item 
summary

Expert 
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Item 
difficulty

4

27 Open equation m + m + m = m + 12.  
Find the value of m. 4.00 2.67

7 Structure

Explain without 
subtracting the 7.

If 56 + 85 = 141, does  
56 + 85 – 7 = 141 – 7?

5.00 2.76

3 Structure

Explain the judgment of 
“67 + 86 = 68 + 85” as 

true or false without 
computing.

4.75 3.12

5 Structure
If 17 + 12 = 29, does  
17 + 12 + 8 = 29 + 8? 

Explain.
5.00 3.12

4 Structure

Find a number that can go 
in each box.  

8 + 2 + ! = 10 + !
Could another number go 

in the boxes? Explain.

5.00 3.56

6 Structure If 2 ! 3 = 6, does 2 ! 3 
! 4 = 6 ! 4? Explain. 5.00 3.73

8 Structure

Is the number that goes in 
the box the same number 

in the following two 
number sentences? 

Explain. 

2 ! ! = 58 

8 ! 2 ! ! = 8 ! 58

5.00 6.55
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