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Abstract 
Knowledge of mathematical equivalence, the principle that two sides of an equation are 

interchangeable, is a foundational concept of mathematics that serves as a key link between 

arithmetic and algebra. This knowledge develops throughout elementary and middle school. 

Unfortunately, measurement issues have limited our abilities to chart the variability in children’s 

developing conceptions of mathematical equivalence. In particular, the diversity of items used by 

different researchers has made it difficult to compare results across studies. In this study, we 

used a construct modeling approach to unify these diverse measures into a single instrument 

designed to measure equivalence knowledge. Our new instrument contributes to the field by a) 

placing commonly used items on the same metric, making them truly commensurable; b) 

expanding our abilities to model the variability of student’s knowledge of equivalence; and c) 

showing explicitly that a subset of typical algebraic problems loads strongly on the equivalence 

knowledge construct.  



 
Understanding the Equals Sign as a Gateway to Algebraic Thinking 

 

Mathematical equivalence is a foundational concept of algebraic thinking that serves as a 

key link between arithmetic and algebra (Baroody & Ginsburg, 1983; Carpenter, Franke, & Levi, 

2003; Kieran, 1981; Knuth, Stephens, McNeil, & Alibali, 2006; MacGregor & Stacey, 1997). 

Typically represented by the ‘=’ symbol, mathematical equivalence, also called mathematical 

equality, is the principle that two sides of an equation are interchangeable. Understanding of 

mathematical equivalence requires relational thinking: realizing that the equals sign symbolizes 

the sameness of the expressions or quantities on each side of an equation (Baroody & Ginsburg, 

1983; Behr, 1980; Carpenter et al., 2003; McNeil & Alibali, 2005a). There is a general consensus 

that knowledge of this concept supports greater algebraic competence, including equation-

solving skills and algebraic reasoning (Jacobs, Franke, Carpenter, Levi, & Battey, 2007; Kieran, 

1992; Knuth et al., 2006; National Research Council, 1998; Steinberg, Sleeman, & Ktorza, 

1991). Moreover, because algebra is an important gateway not only into higher mathematics, but 

also into higher education more generally, the importance of building high-quality understanding 

of mathematical equivalence is of critical importance (Adelman, 2006; Moses & C. E. Cobb, 

2001). 

Unfortunately, numerous studies point to the difficulties that American elementary and 

middle school children have understanding equivalence (e.g., Alibali, 1999; Behr, 1980; Cobb, 

1987; Falkner et al., 1999; Jacobs et al., 2007; Li et al., 2008; McNeil, 2007; Perry, 1991; Powell 

& Fuchs, 2010; Rittle-Johnson, 2006; Rittle-Johnson & Alibali, 1999; Weaver, 1973). Although 

elementary school students have some basic understanding of what it means for quantities to be 

equal, this understanding is often not linked to the equals sign (Baroody, Lai & Mix, 2005; Perry, 



Church & Goldin-Meadow, 1988; Sherman & Bisanz, 2009). Instead of viewing the equals sign 

as a symbol expressing the interchangeability of two sides of an equation, children often interpret 

the equals sign as an operator signal that means ‘‘adds up to’’ or ‘‘gets the answer’’ (e.g., 

Baroody & Ginsburg, 1983; McNeil & Alibali 2005b). This operational view of the equals sign 

can impede development of a relational view of the equals sign necessary for deeper 

understanding of mathematical equivalence (Kieran, 1981; McNeil & Alibali, 2005a).  

In explaining the sources of these difficulties, many accounts blame current educational 

practices. These accounts cite children’s frequent exposure to problems in standard operations-

equals-answer format (e.g., 4 + 5 = 9) for the development of an operational view of 

equivalence. Notably, this format is compatible with an operational view of equivalence, and it is 

thought to be the most frequent context in which American elementary school children see the 

equals sign (McNeil, Grandau, Knuth Alibali, Stephens, Hattikudur & Krill, 2006; Li, Ding, 

Capraro & Capraro, 2008). Because the standard format is seen repeatedly, student often develop 

schemas which interpret the equals sign operationally, even when such interpretations are not 

appropriate (e.g., Falkner et. al, 1999; McNeil & Alibali, 2005b; McNeil, 2008) This operational 

view of the equals sign often persists for many years, serving as an obstacle to the development 

of flexible problem solving skills and algebraic reasoning (Knuth et al., 2006; McNeil et al., 

2006; Steinberg et al., 1991). For example, most students in Grades 1 to 6 solve problems like 8 

+ 4 =  + 5 incorrectly, writing 12 or 17 in the box (Falkner, Levi & Carpenter, 1999). 

Similarly, most American elementary-school children reject closed equations not in a standard “a 

+ b = c” format (e.g., they consider equations such as 3 = 3 and 7 + 6 = 6 + 6 + 1 as false or 

nonsensical) (Baroody & Ginsburg, 1983; Behr et. al., 1980; Falkner et al, 1999).  



Despite the progress that has been made in detailing the sources and signs of children’s 

misconceptions of equivalence, two important measurement issues remain significant obstacles 

to advancing our understanding of how children’s knowledge of equivalence progresses. First, 

researchers have not used measures with proven reliability and validity when investigating 

mathematical equivalence (Hill & Shih, 2009; Authors, in press). Second, the measures of 

equivalence knowledge that are currently in use have tended to be incommensurable. That is to 

say that a) different researchers have used different classes of items to measure what is taken to 

be the same construct; and b) this diversity of independently employed measurement items has 

led to a situation in which it is difficult to compare results obtained across studies. Moreover, to 

date it has not been possible to order the range of diverse assessment items in a hierarchy of 

difficulty that might eventually help chart a typical developmental progression. 

The Current Study 

The current study is part of a project aimed at tackling these issues by unifying diverse 

items into a single assessment designed to measure a cohesive construct of mathematical 

equivalence knowledge. We have attempted to address the issues of validity and reliability in 

another paper that explains the technical details of our measurement development process 

(Authors, in press). The present paper uses the same methodology as our earlier paper, but 

instead focuses on how an assessment that includes each of several diverse measurement items 

can add resolution to our picture of children’s understandings of mathematical equivalence. It 

also employs a new data set, so simultaneously serves as a partial replication and extension of 

our earlier, psychometrically oriented study. 



Measures Currently in Use 

In order to highlight the strengths of our approach, we begin by first providing a brief 

overview of the measures currently used in the field. A review of the literature showed that 

research on the topic has primarily employed three different classes of equivalence tasks: (1) 

open equation-solving items, such as 8 + 4 =  + 5 (e.g., Alibali, 1999; Behr, 1980; Jacobs et 

al., 2007; McNeil, 2007; Matthews & Rittle-Johnson, 2009; Perry, 1991; Powell & Fuchs, 2010; 

Rittle-Johnson, 2006; Weaver, 1973), (2) equation-structure items, such as deciding if 3 + 5 = 5 

+ 3 is true or false (e.g., Baroody & Ginsburg, 1983; Behr, 1980; Falkner et al., 1999; Molina & 

Ambrose, 2006; Rittle-Johnson & Alibali, 1999; Seo & Ginsburg, 2003), and (3) equal-sign-

definition items, such as asking children to provide an explicit verbal definition of what the 

equals sign mean (Behr,1980; Ginsburg, 1977; Knuth et. al., 2006; McNeil et. al. 2006, Seo & 

Ginsburg, 2003). Though somewhat different in form, each of these classes of items has been 

accepted as tapping children’s knowledge of mathematical equivalence, providing a prima facie 

justification for our hypothesis that they might be unified and mapped onto the same 

measurement scale. 

Currently, many studies have privileged one or another of these classes of items over the 

others as indices of equivalence knowledge. For instance, some have used open equations as the 

sole experimental measure of students’ understanding of equivalence (e.g., McNeil, 2007; 

Weaver, 1973); others, such as Behr (1980), have focused primarily on equation-structure items; 

and still others (e.g., Knuth et. al., 2006; McNeil & Alibali 2005a) have focused primarily on 

whether or not students verbally provided a relational interpretation of the equals sign as the 

primary indicator of sophistication with mathematical equivalence. Researchers who have 

employed multiple classes of items have tended to compartmentalize them, analyzing different 



classes as parts of separate subscales (e.g., Jacobs et al, 2007; McNeil & Alibali, 2005b; Powell 

& Fuchs, 2010; Rittle-Johnson, 2006; Seo & Ginsburg, 2003). Unfortunately, to date there has 

not been possible to directly compare across these subscales.  

This lack of commensurability for different classes of items across studies is unfortunate. 

We are left unaware of the relative difficulties of commonly used items or the typical order in 

which competence is gained. This is especially noteworthy given that several authors have 

suggested that context can play an important role in the degree to which students’ knowledge of 

equivalence is elicited (Cobb 1987; McNeil & Alibali 2005a; McNeil & Alibali 2005b; Seo & 

Ginsburg 2003; Weaver 1973). Each of the different classes of items can be considered as 

measuring equivalence knowledge in a somewhat different context. Measuring knowledge in one 

context to the exclusion of others provides an incomplete picture of children’s knowledge – 

hence the need for instruments that employ multiple contexts.  

Moreover, most studies have not systematically varied factors that are suspected to 

influence item difficulty within a given class. In particular, the format of an equation seems very 

influential. As noted above, several studies suggest that items with standard equations (all 

operations on the left) are easier than those with all operations on the right side of the equals sign 

(Weaver, 1973). It has also been suggested that equations with all operations on the right side 

may be less difficult than equations with operations on both sides of the equals sign (Falkner et. 

al, 1999). We have systematically composed our assessment of items of various formats and 

presumed difficulties. Below, we detail specific ways in which equation structure is hypothesized 

to affect item difficulty.  



Detailing the Construct  

 In our efforts to place the different classes of items and different equation structures on 

the same measurement scale, we utilized Mark Wilson’s Construct Modeling approach to 

measurement development (Wilson, 2003, 2005). This approach begins by positing a construct 

map, which is a representation of the continuum of knowledge levels for the construct under 

consideration.  

The construct map we developed in our earlier work is presented in Table 1, with less 

sophisticated knowledge represented at the bottom and more advanced knowledge represented at 

the top (Authors, in press). Note that representative items from each of the different classes of 

typical items are present at each level of our construct map. The distinctions between the 

knowledge levels differ primarily in the types of equation formats with which children are 

expected to be successful.  

According to our construct map, students at Level 1 are expected to have success with 

equations in the standard operations-equals-answer format, but to fail with equations in other 

formats. At Level 2, students maintain an operational view of the equals sign, but become 

somewhat more flexible with respect to the types of equation formats that they correctly solve 

and accept as valid. Students at this level specifically become comfortable with equations with 

operations only on the right and equations with no operations. At Level 3, students begin to hold 

a basic relational view, although it coexists with an operational one. Their nascent relational 

understanding is primarily manifested in their becoming successful with equations that feature 

operations on both sides (e.g., 4 + 5 + 8 =  + 8), and they recognize a relational definition of 

the equals sign as a good definition. Finally, Level 4 is a comparative relational understanding of 

equivalence. Students at this level consistently offer relational interpretation of the equals sign. 



Moreover, their reasoning need not be tied to specific computations. For example, students with 

a comparative understanding know that performing the same actions on each side of an equation 

maintains its equivalence, without needing to engage in full computation. 

 Although the construct map is presented as having four levels for purposes of conceptual 

clarity, our model of the construct is continuous. The continuous nature of the model means that 

the levels should not be interpreted as discrete stages. Knowledge change is expected to follow a 

gradual and dynamic progression, with less sophisticated knowledge sometimes coexisting and 

competing with more advanced knowledge (Siegler, 1996). For example, an operational view of 

equivalence can even be elicited from adults in certain circumstances (McNeil & Alibali, 2005a, 

2005b). 

Advantages of Combining the Measurement Classes 

This paper is concerned with addressing three ways in which combining ostensibly 

disparate classes of items on a single assessment can contribute to the depth of our 

understandings about children’s knowledge of mathematical equivalence. First, if all of the items 

are indeed measuring the same construct, then they might all be measured on the same scale. 

This would result in a detailed and meaningful hierarchy of difficulty for items that are typically 

analyzed separately.  

Second, our methodology has the potential to add significant resolution to our abilities to 

illustrate the wide range of variability that exists among children’s equivalence knowledge. 

Currently, we are usually limited to largely binary divisions that result from characterizing 

students according to whether they succeed or fail at a particular class of items. The either/or 

distinctions between those who succeed or fail to provide relational definitions of the equals sign 

(or alternatively, to solve open equations or to accept noncanonical equations as valid) may have 



significant predictive power, but these distinctions cannot be used to resolve the variability 

within the binary groups that result. By aggregating a host of different nonstandard structures and  



Table 1  

Construct Map for Mathematical Equivalence Knowledge 

Level Description Core Equation 

Structure(s) 

Level 4: 

Comparative 

Relational 

Successfully solve and evaluate equations by comparing the 

expressions on the two sides of the equals sign, including 

using compensatory strategies and recognizing that 

performing the same operations on both sides maintains 

equivalence. Consistently generate a relational definition of 

equals sign. 

Operations on both 

sides with multi-digit 

numbers or multiple 

instances of an 

unknown: m + m + m = 

m + 12 

 

Level 3: 

Basic 

Relational  

Successfully solve, evaluate and encode equation structures 

with operations on both sides of the equals sign. Recognize a 

relational definition of the equals sign. 

Operations 

on both sides:  

a + b = c + d 

a + b - c = d + e 

Level 2: 

Flexible 

Operational 

Successfully solve, evaluate and encode atypical equation 

structures that remain compatible with an operational view of 

the equals sign.  

Operations on right:  

c = a + b 

No operations: a = a 

Level 1: 

Rigid 

Operational  

Only successful with equations with an operations-equals-

answer structure, including solving, evaluating and encoding 

equations with this structure. Define the equals sign 

operationally. 

Operations on left:  

a + b = c (including 

when blank is before 

the equals sign) 

  
 
  



item classes on a continuous hierarchy of difficulty, we stand to map much of the variability in 

children’s knowledge that would otherwise go undetected. 

Third, establishing a single scale can help inform our notions of the applicability and 

reach of mathematical equivalence as underlying different kinds of mathematical reasoning. 

Such a scale could serve as an anchor for developing new items that also load heavily on the 

construct of mathematical equivalence. For instance, we hypothesized that using a single scale 

would allow us to place two classes of items typically considered to require algebraic reasoning 

on the same scale as other typically used equivalence items: 1) equations involving letter 

variables – or literal variables (e.g., n + n + n + 2 = 17, Jacobs et. al., 2007); and 2) those 

requiring children to reason about how performing the same operation on each side of an 

equation preserves equivalence (e.g., if we know that 76 + 45 = 121, can we tell without adding 

whether or not 76 + 45 – 9 = 121 – 9 ?, inspired by Alibali et. al., 2007; Carpenter et. al., 2003; 

Steinberg et. al., 1990). 

It is often argued that early understanding of mathematical equivalence is key for later 

success in algebra and other higher math, but the evidence supporting such claims is somewhat 

indirect. Currently, some studies do show that higher knowledge of mathematical equivalence is 

predictive of children’s abilities to solve typical algebraic equations (De Corte & Verschaffel, 

1981; Knuth et al., 2006) or to reason about equivalence of equations (Alibali, Knuth, 

Hattikudur, McNeil, & Stephens, 2007). None of these studies, however, has explicitly attempted 

to put more advanced algebraic reasoning items on the same measurement scale as typical 

equivalence items. Establishing typical algebraic items as measures of the construct of 

mathematical equivalence knowledge would help solidify the link between mathematical 

equivalence and algebraic reasoning.  



METHOD 

Participants 

Data were collected from 13 second- through sixth-grade classrooms in two suburban, 

public schools in Tennessee near the end of the school year. Of the students who completed the 

assessment, 53 were in second grade (23 girls), 46 were in third grade (25 girls), 29 were in 

fourth grade (14 girls), 59 were in fifth grade (26 girls), and 37 were in sixth grade (16 girls). 

The mean age was 10.3 years (SD = 1.6; Min = 7.7; Max. = 14.1). The students were largely 

Caucasian; approximately 2% of students were from minority groups. The schools served a 

working- to middle-class population, with approximately 23% of students receiving free or 

reduced lunch. 

The schools used the Tennessee Comprehensive Assessment Program (TCAP) as a 

standardized measure of educational progress (http://www.state.tn.us/education/ 

assessment/achievement.shtml). Students’ scores in math and reading on the 2009 TCAP were 

obtained from student records for 3rd through 6th grade students (the TCAP is not administered to 

2nd graders). Most students (71%) had scored at the Advanced level; 24% of students were 

considered Proficient and 5% were considered Below Proficient. 

Test Development Procedure  

 Past research has used the three primary classes of items described above for measuring 

mathematical equivalence. Most of the items on our assessment were taken directly from 

previously published work or created based on items present in those (Baroody & Ginsburg, 

1983; Behr, 1980; Carpenter et al., 2003; Jacobs et al., 2007; Knuth et al., 2006; Matthews & 

Rittle-Johnson, 2009; Rittle-Johnson, 2006; Seo & Ginsburg, 1983; Warren, 2003; Weaver, 

1973). Items were classified as Level 1 (rigid operational), 2 (flexible operational), 3 (basic 



relational) or 4 (comparative relational) based on their equation structures, as outlined in Table 1. 

On some items, students were asked to explain their reasoning.  

We made minor revisions to the original assessment of (Authors, in press) based on 

empirical evidence of item performance and feedback from a panel of experts in mathematics 

education research. Five items from each form of the assessment used in Authors (in press) were 

cut due to weak psychometric properties. Eight items were added to each form, based on the 

advice of our panel of math education experts. Two of the added items added were simpler ones, 

asking if 4 = 4 + 0 was true or false and what the equals sign meant in the context of “1 quarter = 

25 pennies.”  

Four additional items were added that tested students’ knowledge of the properties of 

equivalence, which hold that an equivalence relationship remains true as long as an identical 

operation is performed on both sides of the equals sign (see Figure 1). These types of problems 

have been cited as addressing the types of thought that underlie formal transformational algebra 

(Kilpatrick, Swafford, & Findell, 2001; Steinberg et al., 1991). Although these items can be 

solved by computation, we coded performance based upon children’s explanations of how the 

problem can be answered without computation. Answers coded as correct needed to call upon 

explicit knowledge of the properties of equivalence (e.g., “minus 7 is on both sides so you don't 

need it”).  

We also added two items that featured literal variables that are commonly seen in formal 

algebra. For instance, one asked students to, “Find the value of n,” for the equation n + n + n + 2  



 7. Without subtracting the 9, can you tell if the statement below is true or false?  

 
    76 + 45 = 121 is true.  
 

Is 76 + 45 – 9 = 121 – 9 true or false? 
 
 

True   False    Can’t tell without subtracting 
 

How do you know? 
 

Figure 1.  Sample item probing student knowledge of the properties of equivalence 

 
= 17 (from Jacobs et. al., 2007). These items are important because the use of literal variables —

particularly multiple instances of the variable — tests whether students comprehend 

that a variable represents a specific and constant number value. There was only a single item of 

this type on the original assessments, but there were three on each of the new forms.  

There were two comparable forms of the assessment created using a step-by-step item 

matching procedure to ensure similarity of content and difficulty across forms (see Authors, in 

press for details on item matching). In sum, there were 31 items on each form of the assessment 

– thirteen Level 4 items, ten Level 3 items, five Level 2 items, and three Level 1 items. 

Test Administration 

The assessment was administered on a whole-class basis by members of the project team. 

We used a spiraling technique to distribute the two forms of the assessment in each classroom, 

alternating between handing out the first and second form of the assessment. Completion of the 

assessment required approximately 45 minutes. Test directions were read aloud for each type of 

item in 2nd grade classrooms to minimize the possibility that reading level would affect 

performance. Otherwise, test administration was identical across grade levels. 



Scoring 

Each item was scored dichotomously (i.e., 0 for incorrect or 1 for correct). For 

computation items, students received a point for answers within one of the correct answer to 

allow for minor calculation errors. For the nine explanation items, students received a point if 

they mentioned the equivalence relation between values on the two sides of the equation (see 

Table 2). An independent rater coded responses for 20% of the sample, with a mean exact 

agreement of 0.99 for Form 1 (range .96 to 1.00) and .97 for Form 2 (range .87 to 1.00). 

The Rasch Measurement Model 

We used a Rasch model along with methods from Classical Test Theory to evaluate the 

performance of the assessment. Rasch modeling is a one-parameter member of the item response 

theory (IRT) family (Bond & Fox, 2007). The Rasch model estimates both respondent ability and 

item difficulty simultaneously, yielding the probability that a particular respondent will answer a 

particular item correctly (Rasch, 1993; Wright, 1977). We used Winsteps software version 

3.68.0.2 to perform all IRT estimation procedures (www.winsteps.com). In addition to providing 

item and respondent parameters, the Rasch model estimation procedure provides information on 

the goodness of fit between empirical parameter estimates and the measurement model via infit 

and outfit values (see Linacre, 2010); infit and outfit values for an item between 0.5 and 1.5 

indicate that the item fits well with the other items on the test. 

One intuitive description of a Rasch model is as a probabilistic Guttman scalogram. It 

integrates the difficulty hierarchy of the Guttman model with a bit more flexibility: The Rasch 

model is a probabilistic one, which is consistent with a model of human understanding that 

allows for different types of understandings to coexist at the same time (e.g. Siegler, 1996). One 

of the advantages of the model is that it uses empirical results to place items on a true continuum. 



Table 2. Coding Scheme for Select Explanation Items 

 

Hence, our construct map is really only the conceptual skeleton upon which our model is built. 

Once the empirical data is used to add substance to the skeleton, those data can be used to 

seamlessly cover all four levels. These empirical estimates, along with the fit scores discussed 

above, can be used to address our primary concerns about the variability of children’s 

understandings and about whether or not typically algebraic items can properly be grouped with 

other items that measure understanding of mathematical equivalence. 

Because equivalent groups took the two forms of the assessment, we were able to use a 

single IRT model to estimate item difficulty and respondent ability across the forms (Kolen & 

Item Sample Correct Responses Sample Incorrect Answers 

What does the equals sign (=) 

mean? 

“It means the same as” 

 “Is equal to or has the same amount” 

“The answer to the 

question” 

 “The sum” 

Without subtracting the 7, can 

you tell if the statement is true 

or false? 56 + 85 = 141 is true. 

Is 56 + 85 - 7 = 141 – 7 true or 

false? 

 “Because it's subtracting 7 from both 

sides and 56+85=141 then subtract 

seven and it'll be equal” 

“Because before you minus seven you 

have 141 for both” 

“I did the math” 

“in my head I subtracted 

and got the same answer” 

“because I looked at both 

number sentences and they 

didn't match” 

 Without adding 89 + 44, can 

you tell if the number sentence 

is true or false? “89 + 44 = 87 + 

46”  

“Because all you do is take two from 89 

and put two on 44” 

“Because 89-87=2 and they add 2 to 44 

so it is even”  

“Because 89+44=183 and 

87+46=133 too” 

“You just have to add the 

numbers up” 



Brennan, 2004). Several indicators confirmed the equivalence of students who completed the two 

forms. The distribution of forms was even within each grade level, and groups were also 

equivalent in mean age (Form1 = 10.3 years, Form 2 = 10.2 years), mean grade (Form 1 = 4.0, 

Form 2 = 3.9), and on average TCAP math scores (Form 1 = 525, Form 2 = 517).  

RESULTS 

We first briefly discuss evidence for the reliability and validity of the assessment, which 

supports that all of the items can be measured on the same scale. Next, we turn to how the 

instrument specifies the degree of variability among students’ levels of equivalence knowledge. 

Finally, we discuss how the new measure can explicitly show the relation between equivalence 

knowledge and more advanced algebraic competence.  

Evidence for Reliability & Validity – A Single Construct Model 

Internal consistency, as assessed by Cronbach’s α, was high for both forms of the 

assessment (Form 1 = .93; Form 2 = .94), providing support for the reliability of the assessment. 

Multiple measures provided evidence for the validity of our assessment. First, four mathematics 

education experts who each had over 10 years experience conducting research on elementary-

school children’s knowledge of algebra rated the items, providing evidence for face validity of 

the test content. The four experts rated most of the test items as ranging from important (rating = 

3 of 5) to essential (rating = 5 of 5) items for tapping knowledge of equivalence, with a mean 

rating of 4.1. 

 Second, we evaluated whether our construct was reasonably characterized as tapping a 

single dimension. Within an IRT framework, the unidimensionality of a measure is often 

checked by using a principle components analysis of the residuals (PCA) after fitting the data to 

the Rasch model (Linacre, 2010). This analysis attempts to partition unexplained variance into 



coherent factors that may indicate other dimensions. The Rasch model accounted for 59.9% of 

the variance in our data set. A PCA on the residuals indicated that the largest secondary factor 

accounted for 2.1% of the total variance (eigenvalue of 3.2), corresponding to 5.2% of the 

unexplained variance. The secondary factor was sufficiently dominated by the Rasch dimension 

to justify the assumption of unidimensionality (Linacre, 2010).  

Third, as a check on the internal structure of the measure, we evaluated whether our a 

priori predictions about the relative difficulty of items were correct (Wilson, 2005). Recall that 

when creating the assessment, we selected items to tap knowledge at each of the four levels on 

our construct map. The hypothesized difficulty level for each item correlated highly with the 

empirically derived item difficulty, r(62) = .85 p < .01. We also used an item-respondent display 

called a Wright map to help evaluate our difficulty predictions (Wilson, 2005). The Wright map 

allows for quick visual inspection of whether our construct map correctly predicted relative item 

difficulties (Figure 2). In brief, a Wright map consists of two columns, one for respondents and 

one for items. On the left column are respondents (i.e., participants). Those with the highest 

ability scores on the construct are located near the top of the map, while those with the lowest 

scores are located near the bottom. Assessment items are located on the right column. The most 

difficult items are located near the top of the map and the least difficult ones are near the bottom. 

The vertical line between these two columns indicates the scale for both the ability and difficulty 

parameter estimates measured in logits (i.e., log-odds units). The average of the item distribution 

was set to 0 logits; negative scores indicate items that were easier than average, and positive 

scores indicate items that were harder than average. The advantage of the logit scale is that it can 

be used to calculate the probability that a participant of a given ability level will be successful on 

an item of a particular difficulty. The Wright map shown in Figure 2 is condensed to represent 



the selected items discussed below. The full assessment and corresponding Wright maps are 

available from the authors upon request. 

As can be seen on the Wright map, the items we had categorized as Level 4 items were 

indeed the most difficult items (i.e., they clustered near the top with difficulty scores greater than 

0); the items we had categorized as Levels 1 and 2 items were indeed fairly easy items (i.e., 

clustered near the bottom with difficulty scores less than -1); and Level 3 items fell in between. 

Overall, the distribution of items on the Wright map supports our hypothesized levels of 

knowledge, progressing in difficulty from a rigid operational view at Level 1 to a comparative 

relational view at Level 4. After confirming that items were clustered as expected, we added 

horizontal lines on the Wright map corresponding to approximate cut points between levels. We 

added these lines to aid discussion, but it should be remembered that the construct is at root a 

continuous measure and that speaking in terms of levels is merely a conceptual convention.  

We also found that student ability levels behaved as expected. First, the ability level of 

individual students was highly correlated with grade level r(224) = .72, p < .01. Second, the 

correlation between the TCAP math scores for Grade 3 to 6 students and their ability estimates 

was also high r(170) = .70, p < .01. This positive correlation between our assessment and a 

general standardized math assessment provides some evidence of convergent validity.  

The current results, collected from a new population in a different school district, 

replicate our original findings of adequate psychometric properties for our assessments (Authors, 

in press). These findings provide strong evidence for the reliability and validity of our 

mathematical equivalence instrument. In support of our first hypothesis, the results indicate that 

items from different classes can be measured on a single scale, with a hierarchy of item difficulty 

that matches our construct map. 



Elaborating the Variability in Student Knowledge. 

A second goal was to add resolution to our conception of the variability in students’ 

understandings of mathematical equivalence. To illustrate this contribution, we will first discuss 

how the current model augments the discussions put forth by studies that focus on individual 

classes of items. We exploit the fact that individual student ability scores, as estimated by the 

Rasch model, can be used to find specific probabilities that a given student will be successful on 

a given item. Specifically, we can calculate the probability of any participant’s success on any 

given item using the equation  where θ is a participant’s ability estimate, 

and d is the item difficulty estimate. This is a powerful analytical tool, because it allows us to 

take a single measure (a student’s ability score) and use it to predict the types of items with 

which a student is likely to struggle – without the usual need for resource intensive item-by-item 

error analysis. The contrasts between these probability estimates for different students will be 

used to help provide a detailed picture of the variability in student knowledge of mathematical 

equivalence. We selected 6 representative student ability estimates – corresponding to high and 

low scores within Levels 2, 3 and 4 – for the purposes of illustration. Table 3 lists the 

probabilities that students at each of these various ability levels will generate correct answers for 

selected items. 

Open-equation solving items. Several researchers have suggested that students’ difficulties with 

solving open equations should be dependent upon the format of those open equations (Falkner et 

al., 1999; Weaver, 1973), and the levels of our construct map are based in part upon this idea. 

The more nonstandard or unfamiliar the format, the more difficult the item should be. 

Unfortunately, to date no one has tried to quantify the differences in difficulty among 

nonstandard equations of different formats. 
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PERSON - MAP - ITEM 

     PERSONS – LOGITS - ITEMS 
 
           7 
           | 
           |  
           | 
           6      
           | 
         . |  
           | 
         # 5T 
           | 
          T| 
         . | 
           4 
     .#### |  
           | If 76+45=121,does 76+45-9=121-9? 
       .## | 
         # 3 Judge “89+44=87+46” as T/F 
      .### | If 56+85=141,does 56+85-7=141-7?  n+n+n+2=17. Find the value of n. 
         # |S  
  ####### S|  
     .#### 2  
           | c+c+4=16. Find the value of c 
   .###### | What does the equals sign mean? 
   ####### | 
   ####### 1  
     .#### |  
        .# | 
      .### |  
     #### M0M  
       ### | 7+6+4=7+   
      #### |  +2=6+4  Judge “7+6=6+6+1” as T/F 
       .## | 13=n+5. Find the value of n.   
       .# -1 Judge “8=8” as T/F  Rate “The equal sign means two amounts are the same” as good or bad 
        ## |  
     ##### | 
      .### | 
      ### -2 
    .#### S|  
         # |S  
  .####### | 8=6+    Judge “4=4+0” as T/F 
      .## -3 
      #### | 
       ### |  
         # |  
       ## -4  
           | 
         # | 
          T| 
          -5T 
           |  +5=9 
         . | 
         . | 
          -6  
   

EACH "#" IS 2 PEOPLE. EACH "." IS 1 PERSON. 

 

Figure 2. The Wright Map. Each “#” represents two respondents, and each “.” represents one 

respondent. M = Mean, S= Standard Deviation, and T = Two Standard Deviations 
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The simplest nonstandard open equation items was  + 5 = 9. This was expected to be 

the case because this item still adhered to standard operations-equals-answer format, and was 

classified at Level 1. As shown in Table 3, even the lowest performers were able to solve this 

item correctly over 90% of the time. 

The next most difficult items were those with all operations on the right of the equals 

sign. Although students on the upper half of the ability continuum showed complete mastery for 

these items, students of lesser ability were substantially less likely to solve these items than items 

in operations-equals-answer format. For instance, low level 2 students were expected to solve  

+ 5 = 9 correctly 92% of the time, but were expected to solve 8 = 6 +  correctly only 50% of 

the time (an odds ratio of 11.5)!  

Finally, items became even more difficult when they involved operations on both sides of 

the equals sign. For instance,  + 2 = 6 + 4 was considerably more difficult than  + 5 = 9 for 

all but the most skilled students. Correct performance for low level 2 students was expected to 

drop to 10% for this item. Although low level 3 students had largely mastered solving equations 

with operations on the right, they were only expected to get this item correct 38% of the time. 

Interestingly, the somewhat longer item, 7 + 6 + 4 = 7 +  was of nearly identical difficulty 

despite the fact that the item involves an extra addend and an extra addition sign. This suggests 

that our construct map is correct in positing the relevant placement of operations as a factor 

affecting difficulty and leaving the number of addends and whether the unknown is on the left or 

right side as relatively unimportant factors. In summary, as specified on the construct map, 

equations with all operations on the right were harder than equations with all operations on the 

left (the distinction between Level 1 and Level 2), and equations with operations on both sides 

were harder than equations with operations only on the right (the distinction between Level 2 and 
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Table 3 

Probability of Success on Selected Items by Student Ability Estimate 

  STUDENT ABILITY LEVEL (θ = Rasch Ability Estimate) 

  
Low 

Level-2 
θ = -2.7 

High 
Level-2 
θ = -1.35 

Low 
Level-3 
θ = -0.95 

High 
Level-3 
θ = 0.10 

Low 
Level-4 
θ = 0.61 

High 
Level-4 
θ = 3.75 

ITEM Item Difficulty 
Estimate       

Equation-Solving Items        
 + 5 = 9 -5.21 0.92 0.98 0.99 1.00 1.00 1.00 

8 = 6 +   -2.71 0.50 0.80 0.85 0.94 0.97 1.00 

 + 2 = 6 + 4 -0.47 0.10 0.29 0.38 0.64 0.75 0.99 

7 + 6 + 4 = 7 +   -0.31 0.08 0.26 0.35 0.60 0.72 0.98 
Equation-Structure Items        

4 = 4 + 0  T or F -2.56 0.47 0.77 0.83 0.93 0.96 1.00 

8 = 8  T or F -1.18 0.18 0.46 0.56 0.78 0.86 0.99 

7 + 6 = 6 + 6 + 1  T or F -0.7 0.12 0.34 0.44 0.69 0.79 0.99 
Equals-Sign Items        

Rate “The equal sign means two amounts 
are the same” as good or bad -.96 0.15 0.40 0.50 0.74 0.83 0.99 

What does the equals sign (=) mean? 1.51 0.01 0.05 0.08 0.20 0.29 0.90 
Literal Variable Items        

13 = n + 5 -.75 0.12 0.35 0.45 0.70 0.80 0.99 

c + c + 4 = 16 1.76 0.01 0.04 0.06 0.16 0.24 0.88 

m + m + m = m + 12 2.67 0.00 0.02 0.03 0.07 0.11 0.75 

Properties of Equivalence Items        
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Explain if “67 + 86 = 68 + 85” is True or 
False without computing. 2.15 0.01 0.03 0.04 0.11 0.18 0.83 

Explain why, without subtracting the 9, if 
76 + 45 = 121 is true, 76 + 45 - 9 = 121 – 
9 is true too (could refer them to table 2) 

3.48 0.00 0.01 0.01 0.03 0.05 0.57 
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Level 3).  

We examined the textbook series used at the participating schools (Harcourt) to explore 

whether frequency of exposure to these different equation types parallels improving competence 

with different equation formats. As expected, in second grade, equations in operations-equals-

answer format predominated (86% of instances of the equal sign). By fifth grade, this format was 

much less frequent (50%), and equations with no operations (21%) or operations on the right 

(16%) were fairly frequent. However, equations with operations on both sides of the equal sign 

were infrequent across grade levels (ranging from 0% to 8% of instances of the equal sign). This 

suggests that simple frequency of exposure does not independently explain increasing success 

with equations with operations on both sides. 

Equation-structure items. We confirmed that acceptance of nonstandard forms was an 

indicator of sophistication with equivalence knowledge and that certain equation formats are 

much more difficult to evaluate than others. Behr (1980) suggested that problems should increase 

in difficulty as they vary in form from equations with operation on the right side to equations 

with no operations to equations with operations on both sides of the equals sign. Indeed, 

equations with operations limited to the right side, such as 4 = 4 + 0, though non-standard, were 

not as difficult for children to grasp as non-canonical equations with no operators (e.g., 8=8) or 

those with operations on both sides, such as 7 + 6 = 6 + 6 + 1 (see Table 3). High Level 2 

students were largely expected to accept 4 = 4 + 0 as true (78% correct), but fall to chance for 8 

= 8 (46% correct) and to rarely accept 7 + 6 = 6 + 6 + 1 as true (28% correct). A high Level 3 

performer exhibits clear mastery for 4 = 4 + 0 (94%) and is correct the vast majority of the time 

for 8 = 8 (80%). Performance falls off a bit, however, for the item with operators on both sides of 

the equals sign (64%).  
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All told, the data show that although it is correct that whether or not students accept 

nonstandard equation formats is an important indicator of equivalence knowledge, it further pays 

to consider which nonstandard formats they accept. Some nonstandard formats are much more 

difficult than others. Moreover, it appears that equation format affects difficulty similarly for 

both open-equation and equation-structure item types. 

Equal-sign items. We were also interested in how students’ abilities to give a relational 

definition of the equals sign was related to their success on other items designed to tap their 

explicit knowledge of the equals sign, as well as items on open-equation and equation-structure 

items. First, we should note that requiring that children to provide a relational definition of the 

equal sign was more difficult than other from the class of equals-sign items. Recognizing a 

relational definition of the equals sign from a list – as opposed to generating one – was much 

easier. For instance, asking children to rate the phrase, “the equal sign means two amounts 

are the same” as good or bad was much easier (see Table 3). 

Providing a relational definition of the equals sign proved to be very difficult for many 

children. For example, both high level 3 students (at the beginning relational level) and high 

Level 2 students (at the flexible operational level) were unlikely to offer a relational definition of 

the equals sign (20% and 1% probabilities respectively, see Table 3). Similar performance on 

this item, however, stands in stark contrast to the differences in performance these same students 

are expected to have on other items. For instance, when asked to evaluate the equation 4 = 4 + 0 

as true or false, the high Level 3 student is expected to be successful 93% of the time, whereas 

the Low Level 2 student is expected to be successful only 47% of the time. Similarly, when 

asked to solve  + 2 = 6 + 4, high Level 3 students are successful 64% of the time, despite their 

general failure to generate a relational definition of the equals sign. By contrast the low Level 2 
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students are expected to succeed on this item only 10% of the time. By including these diverse 

measures in one hierarchy, our assessment helps map variability that might otherwise remain 

uncharted.  

Our model also adds resolution when considering those who succeed at offering a 

relational definition of the equals sign. This is despite the fact that there is far less variability 

within our sample for those who offer a relational definition than for those who do not. Only 

10% of our sample is located a full logit above the difficulty level for this question (i.e., expected 

to provide a relational definition at least 73% of the time) whereas 59% of our sample is located 

a full logit below this item on the Wright map (i.e., expected to provide a relational definition 

less than 27% of the time). This compressed variability on the high end suggests that this item is 

indeed a good one to pick if searching for a single indicator of mastery. In order to show how our 

model improves resolution for the high end students, the following discussion will diverge a bit 

in form, comparing students within a given ability level (high level 4 students) as opposed to 

comparing students between ability levels. 

In our sample, there were 22 students showing ‘mastery’ for this item, (i.e. whose ability 

estimates were a full logit above the item difficulty, as defined above). Of these master definers, 

seven students scored a full two logits higher than the difficulty of the item (i.e., they were 

expected to get the item correct 88% of the time). The differences between the abilities of the 

two subgroups of master definers were quite substantial, which becomes apparent when we 

consider their expected performance on a still more difficult item. Take for example, an item that 

asks them to provide an explanation using explicit arithmetic properties of equivalence, 76 + 45 

= 121 is true. Is 76 + 45 – 9 = 121 – 9 true or false? (see below for a more detailed discussion 

of the item). The more highly skilled subgroup of master definers was expected to be successful 
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on this high difficulty item roughly twice as often as the less skilled subgroup (27% vs. 51%). 

Thus, there is even clearly detectible variability within the mastery level students.  

As a final point on students’ verbal interpretations of the equals sign, assessing whether 

or not a child offered a relational definition was not the same as if we were much stricter and 

coded whether or not a child offered only a relational definition (sometimes students offered 

alternative operational interpretations alongside their relational offerings). We did not include 

this stricter coding in our Rasch model due to the model’s requirements for item independence, 

but we do have performance information for this stricter criterion. Whereas 26% of our sample 

could offer a relational definition, only 10% of our sample – or roughly 2 out of every 5 

relational definers – provided only relational definitions. Recall from our construct map that we 

hypothesized that the relational definition could coexist with other less sophisticated definitions. 

This also accords well with previous findings that different definitions emerge in different 

contexts (McNeil & Alibali, 2005b; Seo & Ginsburg, 2003).  

 Equations with Literals. There were three items with literals as variables on each form of 

the assessment, and the equations varied in whether there were multiple instances of the variable 

and in whether there were operations on one or both sides of the equation. Using literals extends 

the range of number sentences by introducing repeated instances of the unknown, something that 

cannot be easily tested without the use of literals (Carpenter et al., 2003; Jacobs et al., 2007). 

 The first thing to note is that each of the three items was well aligned with the construct, 

both according to indicators from classical test theory and measures specific to the Rasch model. 

Item total correlations were above .45, and infit and outfit statistics of model fit were within 

acceptable ranges of .5 to 1.5 for each of the items. This is an important point: the items using 

literals fit the Rasch model as well as other items typically used to study mathematical 
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equivalence. This suggests that this subset of algebraic items loads very heavily on equivalence 

knowledge.  

 The next thing to note is that these items (as expected) were not of equal difficulty. 

Instead, difficulty varied as the format of the item changed. The item 13 = n + 5 received a 

difficulty rating of -.75, making it a mid Level 3 difficulty item. It appears that the use of the 

literal made this item more difficult than other open-equation items with similar format and no 

literal variable. For example, 8 = 6 +  was significantly easier, with a difficulty of -2.71 (Table 

3). Even though use of the literal n is logically equivalent to the use of the blank for the missing 

numeral, it appears that the use of the literal renders the item more difficult. This is perhaps 

because the literal is less familiar.  

The item c + c + 4 = 16, on the other hand, was a low Level 4 item. Even though all 

operations were on the left, this item proved more difficult than the most difficult open equation 

solving items on the assessment (i.e., 43 +  = 48 + 76, difficulty = 1.08). This is presumably 

because the item involved multiple instances of the unknown, demanding more novel application 

of the concept of equivalence (Carpenter et al., 2003). 

Finally, m + m + m = m + 12 emerged as a high difficulty level 4 item (difficulty = 2.67). 

This item involved both multiple instances of the literal variable and operations on both sides of 

the equals sign. In fact, it was the most difficult of all assessment items not requiring an 

explanation. Only 11% of low Level 4 students were expected to solve this item properly, 

whereas 72% of them are expected to solve 7 + 6 + 4 = 7 +  correctly (see Table 3). It was of 

even higher difficulty than the item asking for a verbal definition of the equals sign. 

In summary, items involving literals: a) fit the model of the equivalence construct well, 

and b) were more difficult than similarly formatted items, but children with higher knowledge of 
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equivalence seemed to be able use that knowledge to perform better on these less familiar 

problems. Future iterations of our construct map should include the use of literals as a factor that 

increases item difficulty.  

 Use of properties of equivalence. Requiring that students explain the reasoning behind 

their solutions in terms of the relation between numerical expressions is also thought to explicitly 

elicit algebraic thought. Although traditional algorithms are based on fundamental properties of 

equivalence, children rarely receive practice making these properties explicit (Jacobs et al., 2007; 

Steinberg et al., 1991). These items were intended to go beyond testing procedural proficiency in 

order to assess whether or not children could express generalizations about properties of 

equivalence in natural language. Appreciation of these properties allows students to think about 

numerical expression as something more than a series of calculations(Carpenter et al., 2003).  

These algebraic thought items were well aligned with the construct. All but one had infit 

and outfit statistics below 1.5 and all but one had an item total correlation above .2. Just as with 

literals, items testing for explicit verbal knowledge of properties of equivalence fit the Rasch 

model as well as items more typically used to study mathematical equivalence.  

As can be seen on the Wright map (Figure 2), these items were the most difficult items on 

the assessment. To illustrate this point, consider the two items in Figure 3. Even high Level 4 

students, who were expected to define the equals sign relationally 90% of the time, are expected 

to answer these items correctly only 73% and 83% of the time, respectively (Table 3). As 

predicted by our construct map, it appears that articulating the properties of equivalence 

represents an advance in equivalence knowledge over interpreting the equals sign in a relational 

manner. These items help to distinguish between children who all successfully provided 

relational definitions of the equal sign.  



 32 

  
 

 

 

Figure 3. Student use of the inefficient solve and compare strategy 
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Consider the explanations that students gave to these items. Some students could evaluate 

the truth of these equations via procedural routes, but nonetheless could not explain the logical 

shortcuts that proceed from relational thinking (and thus were scored as 0’s). For instance, the 

examples from two students in Figure 3 correctly state that the expressions are equal but used a 

resource intensive solve-and-compare strategy to justify their answers. Although the solve-and-

compare strategy does require that students realize on some level that the equals sign expresses 

the interchangeability of each side of an equation, this strategy is not very efficient and does not 

capture comparative relational thinking (Level 4). 

The inefficiency of this strategy stands in relief to the more advanced strategies that use 

the properties of equivalence (see Table 2). For instance, the student in Figure 4 has generalized 

 

  

Figure 4. Student recognition that performing the same operation on both side preserves 

equivalence 
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the fact that performing the same operations on both sides of an equation conserves equivalence, 

a requisite skill for recognizing the link between arithmetic and algebra (Jacobs et al., 2007). 

Another example of such advanced equivalence knowledge is reflected by answers that 

demonstrate use of compensation strategies as in Figure 5 below. In this example, the student has 

used the fact that 87 is two less than 89, which means that the addend coupled with the 87 must 

be two more than the one coupled with 89 in order to preserve equality. Carpenter et al, (2003) 

has argued that such use of compensation strategies instead of full calculation is an indicator of 

relational thinking.   

In summary, items that require explaining properties of equivalence – which are typically 

thought to assess algebraic thought – fit our model of mathematical equivalence as laid out in our 

construct map. These items requiring that students explain the properties of equivalence are 

amongst the most difficult items on the assessment, which helps illustrate an important feature 

 

 
Figure 5. Student use of compensation strategy 
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 of our method: it can be used to explore new potential items that measure knowledge of 

mathematical equivalence. Kieran (1981) has previously suggested that failures on some more 

advanced mathematical items may in fact stem from incorrect conceptions of equivalence. As 

more candidate items are generated, our method can assess a) whether or not these new potential 

items measure the construct of mathematical equivalence knowledge, and if so, b) where they 

fall in the hierarchy of difficulty. 

 

DISCUSSION 

 Several decades of research have catalogued the difficulties that American elementary 

school children have with understanding the concept of mathematical equivalence (e.g., Alibali, 

1999; Baroody & Ginsburg, 1983; Behr, 1980; Falkner et al., 1999; Jacobs et al., 2007; Li et al., 

2008; Lindvall & Ibarra, 1980; Matthews & Rittle-Johnson, 2009; McNeil, 2007; Powell & 

Fuchs, 2010; Weaver, 1973). The current study adds resolution to that picture by reconciling 

previously incommensurable measurement items onto a single scale. We replicated and extended 

the results from a previous study to develop this measure. Our findings reaffirmed that these 

diverse items could be integrated and provided further support for the validity of our measure 

and of our construct map of equivalence knowledge. Moreover, because we used a new sample, 

our findings provide early evidence for the generalizability of our construct map. Below, we 

discuss how our measure helps expand our abilities to measure students’ knowledge of 

mathematical equivalence, both in terms of variability and in terms of the construct’s link to 

typical algebra items. We then discuss some of its current limitations and reflect upon ways that 

it might be improved in the future. 
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Resolving variability in student knowledge 

 Our construct map and measure augments the information gleaned from any single class 

of equivalence items. First, not all nonstandard equation formats are equally challenging. As 

detailed in our construct map, the more that an equation varies from the standard a + b = c 

format, the more difficult it is likely to be. In particular, difficulty seems primarily to depend 

upon the location of the operations in the equation. Difficulty increases as form changes from all 

operations on the left side, to all on the right side, and becomes most difficult when operations 

are included on both sides of the equals sign. Although the comparative difficulties of these 

problems have been suggested in several studies (Baroody & Ginsburg, 1983; Carpenter et al., 

2003; Weaver, 1973) differences in performance according to problem format has rarely been 

quantified. Our findings confirm the importance of equation format by offering a wide range of 

problem formats and testing the effect of problem format on both open equation-solving items 

and equation structure items. They also indicate that differences in item difficulty are quite 

substantial. 

Second, we were able to compare the difficulties of different classes of items all thought 

to tap understanding of equivalence. Focusing across rows in a given column in Table 3 allows 

us to compare the differences in the probabilities of success on different items for students of a 

given ability level. The table helps highlight an interesting point about how equation format 

affects difficulty in a similar fashion across classes – it appears that open-equation and equation 

structure items were of similar difficulty when they were in the same equation formats (e.g., 8 = 6 

+  vs. 4 = 4 + 0 T/F). The table also highlights some interesting differences. For instance, 

consider low Level 4 students. Table 3 clearly reveals that providing a relational definition of the 

equals sign is typically much more difficult than working with equations with operations on both 
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sides, be it solving open-equation or accepting nonstandard formats as valid. The ability to 

accept and solve equations in nonstandard formats and the ability to give a relational definition 

of the equals sign lie substantially far apart on the scale of increasing equivalence knowledge.  

This point illustrates a more general feature of our model in that it helps make clear 

exactly how wide the variability is among students who might otherwise be labeled as being at 

the same ability level. For example, even though 75% of our sample failed to define the equals 

sign relationally, we could detect differences within this group because of the nature of our 

measurement scale.  

Additional Empirical Evidence For The Link Between Algebra And Math Equivalence 

 This is the first instrument that explicitly maps typical algebraic items on to more basic 

items measuring mathematical equivalence. In so doing, we showed that algebraic items 

involving literal symbols load heavily on the construct of equivalence (e.g., m + m + m = m + 

12). We saw that students with higher equivalence knowledge were more likely to solve 

equations involving literals. Importantly, this effect for equivalence knowledge prevailed even 

though these children presumably had no more experience with literal variables than their peers 

in the same classrooms. These findings corroborate the claims of others linking young children’s 

equivalence knowledge to algebraic thinking (Knuth et al., 2006; Lindvall & Ibarra, 1980; 

MacGregor & Stacey, 1997; Steinberg et al., 1991). 

Analysis of performance on equations involving literal symbols suggests two trends: 

First, the use of literals may have added difficulty relative to the use of blanks, even though they 

were logically equivalent. Moreover, it seems that equation format seems to have influenced 

difficulty with equations involving literals in much the same way that it influenced difficulty for 

equations that involved no literals. Namely, equations with operations on both sides were harder 
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for children to solve than those that involved operators on a single side only. The use of multiple 

instances of an unknown, which is only possible with literals, also increased item difficulty. 

 Our method also allowed us to examine student’s explicit use of the properties of 

equivalence in order to demonstrate comparative relational thought. These items were among the 

most difficult on our instrument, surpassing even equations with literals. That is, providing 

verbal explanations for the properties of equivalence on equations using only numbers was more 

demanding – some times much more so – than was solving equations using relatively unfamiliar 

literal variables. This highlights the fact that procedural competence with mathematical 

equivalence can sometimes precede ability to articulate rules governing the domain (Karmiloff-

Smith, 1986).  

Limitations  

 Our measure and construct map have been developed with two different samples of 

elementary school students. In both samples, schools were using traditional math curriculum that 

did not focus on mathematical equivalence. Children’s developing knowledge of equivalence is 

largely thought to be due to exposure – practice with standard operations-equals-answer formats 

encourages the development of operational viewpoints (Alibali et. al., 2007; Li, et. al., 2008; 

McNeil & Alibali, 2005a, Seo & Ginsburg, 2003), Children exposed to multiple formats from 

early on infrequently develop such operational patterns, demonstrating more facility with the 

concept of equivalence earlier (Li et al., 2008). Thus, our construct map may only apply to 

children from similar educational backgrounds. For example, we would expect the construct map 

to look different for a population of Chinese elementary school students or for students using a 

curriculum focused on varied equation structures (e.g., the Wynroth curriculum studied by 
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Baroody & Ginsburg, 1983). With more wide scale testing, we can investigate the extent to 

which our construct map generalizes across different student populations.  

 A second limitation of the current study is that it relies on students’ written responses on 

a paper-and-pencil assessment. Students likely have knowledge that is not revealed on paper-

and-pencil tests. For example, Jacobs et al (2007) used a student interview to reveal whether 

students used relational thinking to solve some of the problems on the written test, including a 

prompt to encourage use of relational thinking. We incorporated these prompts for relational 

thinking in our written assessment, but children often will say more than they will write. 

Integrating items from a structured interview with the written assessment would help reveal the 

impact of assessment format on student performance. 

The Power Of The Method 

 Our final point is about method. Our intent was to build upon prior research in order to 

gain more leverage from the items typically used to measure equivalence knowledge. Our 

contribution, therefore, is first and foremost one of method. Science has historically been 

constrained by the limits of method (Kuhn, 1996). We have presented evidence that suggests that 

our current science regarding math equivalence has similarly been limited by method. The use of 

diverse items without a unifying metric does not allow us to take advantage of the full leverage 

that an integrated instrument affords.  

 Research in mathematics education is pregnant with potential for practical uses of 

Wilson’s construct-modeling approach. In our case, we chose to use the method due to the lack 

of an integrated assessment of equivalence knowledge. In another case, Clements, Sarama, and 

Liu (2008) used the approach to construct an assessment for measuring mathematics ability in 3-

5 year old children. The authors found that existing measures such as the Woodcock-Johnson III 
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had not been validated for children in this young age range. They consulted experts, developed a 

construct map, and designed items to measure the construct. In the final analysis, the construct-

based approach holds potential to help fill lacunae in the field wherever measures are wanting or 

non-existent. 

In summary, we demonstrated how our new assessment built using a construct modeling 

approach stands to enrich our knowledge of children’s understanding of mathematical 

equivalence. Our new method can: a) compare across item classes, b) increase resolution as far 

as item difficulty, even within classes, and c) allow for conceptual expansion of items that might 

demand equivalence knowledge. Moreover, it may eventually allow us to expand the difficulty 

level upward to find places where more advanced students and adults falter in their 

understanding/activation of equivalence knowledge (see Kieran, 1981; MacGregor & Stacey, 

1997; McNeil & Alibali, 2005a). 
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