## Show all work for any credit

List the potential rational zeros of the polynomial function. Do not find the zeros. ( 5 pts )

$$
\text { 1) } f(x)=6 x^{4}+3 x^{3}-4 x^{2}+2
$$

Find all zeros of the function and write the polynomial as a product of linear factors. ( 12 pts )
2) $f(x)=x^{3}+11 x^{2}+36 x+26$
2) $\qquad$

Solve the inequality. Express the solution using interval notation. (10 pts)

$$
\text { 3) } \frac{x+13}{x+5}<7
$$

1) $\qquad$

2) $\qquad$

## Graph the function. (12 pts)

4) $f(x)=\frac{x^{2}+5 x+6}{(x-3)^{2}}$


Find a formula for the inverse of the function described below. (10 pts)
5) An organization determines that the cost per person of chartering a bus is given by the
5) $\qquad$ formula

$$
C(x)=\frac{150+3 x}{x}
$$

where $x$ is the number of people in the group and $C(x)$ is in dollars.

Solve the problem. (10 pts)
6) The logistic growth model $\mathrm{P}(\mathrm{t})=\frac{1}{1+5.67 \mathrm{e}^{-0.877 t}}$ represents the proportion of the total
a) market of a new product as it penetrates the market t years after introduction. When will the product have $70 \%$ of the market?

Solve the equation. Express irrational answers in exact form and as decimal rounded to 3 decimal places. (12 pts) 7) $\left(\frac{1}{2}\right)^{x}=5^{1-x}$
7)

Solve the equation. ( 10 pts )
8) $\log _{3}(x-2)+\log _{3}(x-8)=3$
8) $\qquad$

Solve the problem. Round your answer to three decimals. (7 pts)
9) What annual rate of interest (compounding one time per year) is required to triple an
9) investment in 7 years?

Graph the function using transformations of $\ln x$. Show all asymptotes and approximate intercepts. (12 pts)
10) $f(x)=2-\ln (x+4)$


10) $\qquad$

## Answer Key

Testname: 1050_EXAM2_SP19

1) $\pm \frac{1}{6}, \pm \frac{1}{3}, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm 1, \pm 2$
2) $f(x)=(x+1)(x+5+i)(x+5-i)$
3) $(-\infty,-5)$ or $\left(-\frac{11}{3}, \infty\right)$
4) 


5) $C^{-1}(x)=\frac{150}{x-3}$
6) 2.94 yr
7) $\frac{\ln 5}{\ln \left(\frac{1}{2}\right)+\ln 5} \approx 1.756$
8) $\{11\}$
9) $16.993 \%$
10)


