\qquad Fall 10

SHOW/EXPLAIN ALL WORK FOR ANY CREDIT

(2 pts) Determine whether the equation defines y as a function of \mathbf{x}.

1) $y^{2}+x=7$
A)
B) not a function
(2 pts) Find the domain of the function.
2) $f(x)=\frac{x}{x^{2}+5}$
3) \qquad
A) all real numbers
B)
C)
D)
(3 pts)The graph of a function f is given. Use the graph to answer the question.
4) For what numbers x is $f(x)>0$?

A)
B)
C) $[-5,-3),(3.5,5)$
D)
(8 pts) Solve the equation.
5) $\left|x^{2}-4 x-4\right|=8$
6) \qquad
A) $\{-2,2,6\}$
B)
C)
D)
(4 pts) For the given functions \mathbf{f} and g, find the requested function and state its domain.
7) $f(x)=\sqrt{x} ; g(x)=6 x-1$ \qquad
Find $\frac{f}{g}$.
A)
B)
C)
D) $\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x}}{6 x-1} ;\left\{x \mid x \geq 0, x \neq \frac{1}{6}\right\}$
(8 pts) Determine whether the graph is that of a function. If it is, use the graph to find its domain and range, the intercepts, if any, and any symmetry with respect to the x-axis, the y-axis, or the origin.
8)
9)

)
B)
domain: $\{x \mid x>0\}$
range: all real numbers
intercept: $(1,0)$
symmetry: none
C)
D)
(2 pts) The graph of a function is given. Decide whether it is even, odd, or neither.
7)

A)
B) odd
C)
(4 pts) Determine algebraically whether the function is even, odd, or neither.
8) $f(x)=\frac{x}{x^{2}-4}$
8) \qquad
A)
B) odd
(8 pts) Write the equation. Do not solve!!
9) Alan is building a garden shaped like a rectangle with a semicircle attached to one short side. If he has 40 feet of fencing to go around it, express the area A of the garden as a function of the width or length (your choice) of the rectangle.
A)
B)
C)
D) $A=20 w+\left(\frac{1}{2}-\frac{\pi}{4}\right) w^{2}$
(4 pts) Solve the problem.
10) Assume it costs 25 cents to mail a letter weighing one ounce or less, and then 20 cents for each additional ounce or fraction of an ounce. Let $L(x)$ be the cost of mailing a letter weighing x ounces. Graph y $=\mathrm{L}(\mathrm{x})$.

A)
B)
(6 pts) Use the accompanying graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ to sketch the graph of the indicated equation.
11) $y=-2 f(x-1)$

11) \qquad

A)
B)
C)
D)

Shift right one unit.
(8 pts) Graph the function f by starting with the graph of $\mathrm{y}=\mathrm{x}^{2}$ and using transformations (shifting, compressing, stretching, and/or reflection).
12) $f(x)=-7 x^{2}+14 x-2$

12)
A)
B)
C)

D)
13)
13) You have 108 feet of fencing to enclose a rectangular plot that borders on a river. If you do not fence the side along the river, find the length and width of the plot that will maximize the area.
A)
B) length: 54 ft , width: 27 ft
C)
D)
(8 pts) Solve the inequality.
14) $12\left(x^{2}-1\right)>7 x$
14)
A)
B)
C) $\left\{x \left\lvert\, x<-\frac{3}{4}\right.\right.$ or $\left.x>\frac{4}{3}\right\} ;\left\{\left(-\infty,-\frac{3}{4}\right)\right.$ or $\left(\frac{4}{3}, \infty\right)$
D)

