\qquad

SHOW/EXPLAIN ALL WORK FOR ANY CREDIT

(2 pts) Determine whether the equation defines y as a function of x.

1) $y^{2}+x=7$
(2 pts) Find the domain of the function.

$$
\text { 2) } f(x)=\frac{x}{x^{2}+5}
$$

2) \qquad
(3 pts)The graph of a function f is given. Use the graph to answer the question.
3) For what numbers x is $f(x)>0$?
4) \qquad

(8 pts) Solve the equation.
5) $\left|x^{2}-4 x-4\right|=8$
6) \qquad
(4 pts) For the given functions \mathbf{f} and g, find the requested function and state its domain.
7) $f(x)=\sqrt{x} ; g(x)=6 x-1$
8)

Find $\frac{f}{g}$.
(8 pts) Determine whether the graph is that of a function. If it is, use the graph to find its domain and range, the intercepts, if any, and any symmetry with respect to the x-axis, the y-axis, or the origin.
6)

(2 pts) The graph of a function is given. Decide whether it is even, odd, or neither. 7)

(4 pts) Determine algebraically whether the function is even, odd, or neither.
8) $f(x)=\frac{x}{x^{2}-4}$
8) \qquad
(8 pts) Write the equation. Do not solve!!
9) Alan is building a garden shaped like a rectangle with a semicircle attached to one short side. If he has 40 feet of fencing to go around it, express the area A of the garden as a function of the width or length (your choice) of the rectangle.
9) \qquad
(4 pts) Solve the problem.
10) Assume it costs 25 cents to mail a letter weighing one ounce or less, and then 20 cents for each additional ounce or fraction of an ounce. Let $L(x)$ be the cost of mailing a letter weighing x ounces. Graph $y=L(x)$.

(6 pts) Use the accompanying graph of $\mathbf{y}=f(x)$ to sketch the graph of the indicated equation.
11) $y=-2 f(x-1)$

10) \qquad
)

(8 pts) Solve the problem.

13) You have 108 feet of fencing to enclose a rectangular plot that borders on a river. If you do not fence the side along the river, find the length and width of the plot that will maximize the area.
14) \qquad
(8 pts) Solve the inequality.
15) $12\left(x^{2}-1\right)>7 x$
16)
