#### I. Theory

- 1. Provide an equation that shows the relationship between Gibb's free energy ( $\Delta G^{\circ}$ ), enthalpy ( $\Delta H^{\circ}$ ), and entropy ( $\Delta S^{\circ}$ ). (3 points)
- 2. Use the bond dissociation energy table on the last page to calculate the enthalpy of the reaction below in Kcal/mol. State whether the reaction is endothermic or exothermic. (4 points)



- 3. Provide a rate equation for the reaction above. (3 points)
- 4. Which sequence ranks the following substrates in order of increasing reactivity in an  $S_N^2$  reaction? (3 points)



5. Provide the structure of 4 constitutional isomers  $(C_9H_{15}Br)$  that undergo a structural rearrangement to produce the following carbocation. (8 points)



6. The benzylic carbon-hydrogen bond of toluene, shown below, has a low bond dissociation energy (85 kcal /mol) due to the stability of the intermediate resulting from homolytic bond dissociation. Draw a structure for this intermediate and all contributing resonance structures. (5 points)



### II. Stereochemistry

1. Hydrocodone is a powerful pain reliever and when combined with the acetaminophen make up the #1 best selling prescription medication in the U.S.. Assign each chiral center as having R or S configuration. (8 points)



- 2. How does relative stereochemistry differ from absolute stereochemistry? (2 points)
- 3. Compounds that rotate plane polarized light are said to be \_\_\_\_\_\_ active. (2 points)

4. Translate the following structure to a Fischer projection **and** then draw its enantiomer in its most stable Newman projection siting down the C2-C3 bond. (10 points)



5. Circle all chiral structures below. Indicate any meso structures. (6 points)



6. A reaction produced a nonracemic mixture of two enantiomeric compounds, A and A'. The chiral mixture had a specific rotation of +25°. It was found that pure enantiomer A, had an specific rotation of -65°. Calculate the optical purity of this mixture and then state the percent abundance of each enantiomer in the reaction mixture. Show all of your work for full credit. (4 points)

### III. Mechanisms

1. Provide an arrow pushing mechanism that accounts for the two products. Include all intermediates and formal charges. (10 points)



2. Provide a structure for the transition state of the following reaction. (4 points)

# IV. Reactions

1. Predict the product of the following reaction. (3 points)

Br + NaSCH<sub>3</sub> THF

- Page 5 of 7
- 2. Draw the monochlorination products resulting from the following reaction. Use the relative reactivity of each type of hydrogen to determine the percent abundance of each product. (8 points)

Cl<sub>2</sub>, hv

3. Provide the major elimination product of the following reaction. Include all relevant stereochemistry. (3 points)



4. Provide a Fischer projection for the major substitution product and draw the major elimination product in a line-angle structure. (6 points)



5. Provide the starting materials for two possible intramolecular  $S_N^2$  reactions that produce the following product. Circle the better of the two routes. (8 points)

Route 1

Route 2



# V. **Extra Credit** (5 points)

1. Using the reaction below, show how a polar protic solvent is able to stabilize the transition state of this reaction.

CH<sub>3</sub>OH CH<sub>3</sub>CH<sub>2</sub>Br CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub>

You received \_\_\_\_\_\_ points out of 100 points possible. To check your overall performance in lecture see <u>http://vista.weber.edu/.</u>

|                     |      |                       | Bond-Dissociation<br>Energy |        |                                             | Bond-Dissociation<br>Energy |        |
|---------------------|------|-----------------------|-----------------------------|--------|---------------------------------------------|-----------------------------|--------|
|                     | Bond |                       | kcal/mol                    | kJ/mol | Bond                                        | kcal/mol                    | kJ/mol |
| H-X bonds and       |      | bonds                 |                             |        | Bonds to secondary carbons                  |                             |        |
| Н-Н                 |      |                       | 104                         | 435    | (CH <sub>3</sub> ) <sub>2</sub> CH H        | 95                          | 397    |
| D-D                 |      |                       | 106                         | 444    | (CH <sub>3</sub> ) <sub>2</sub> CH F        | 106                         | 444    |
| FF                  |      | <ul> <li>C</li> </ul> | 38                          | 159    | (CH <sub>3</sub> ) <sub>2</sub> CH arrow Cl | 80                          | 335    |
| CI-CI               |      | 1.1                   | 58                          | 242    | $(CH_3)_2CH - Br$                           | 68                          | 285    |
| Br—Br               |      |                       | 46                          | 192    | $(CH_3)_2CH-I$                              | 53                          | 222    |
| II                  |      |                       | 36                          | 151    | (CH <sub>3</sub> ) <sub>2</sub> CH—OH       | 91                          | 381    |
| HF                  |      |                       | 136                         | 569    | Bonds to tertiary carbons                   |                             |        |
| H - Cl              |      |                       | 103                         | 431    | $(CH_3)_3C - H$                             | 91                          | 381    |
| H—Br                |      |                       | 88                          | 368    | $(CH_3)_3C - F$                             | 106                         | 444    |
| ΗI                  |      |                       | 71                          | 297    | (CH <sub>3</sub> ) <sub>3</sub> C Cl        | 79                          | 331    |
| НО-Н                |      |                       | 119                         | 498    | $(CH_3)_3C - Br$                            | 65                          | 272    |
| НО-ОН               | [    |                       | 51                          | 213    | $(CH_3)_3C - I$                             | 50                          | 209    |
| Methyl bo           | nds  |                       |                             |        | (CH <sub>3</sub> ) <sub>3</sub> C OH        | 91                          | 381    |
| CH <sub>3</sub> H   |      |                       | 104                         | 435    | Other C — H bonds                           |                             |        |
| CH <sub>3</sub> -F  |      |                       | 109                         | 456    | $PhCH_2$ —H (benzylic)                      | 85                          | 356    |
| CH <sub>3</sub> -Cl |      |                       | 84                          | 351    | $CH_2 = CHCH_2$ H (allylic)                 | 87                          | 364    |
| CH <sub>3</sub> —Br |      |                       | 70                          | 293    | $CH_2 = CH - H (vinyl)$                     | 108                         | 452    |
| CH <sub>3</sub> -I  |      |                       | 56                          | 234    | Ph—H (aromatic)                             | 110                         | 460    |
| CH <sub>3</sub> -OI | H    |                       | 91                          | 381    | C-C bonds                                   |                             |        |
|                     |      |                       |                             |        |                                             |                             | 2.00   |

| IIIA   | IVA       | VA     | VIA       | VIIA   | He 4.003 |
|--------|-----------|--------|-----------|--------|----------|
| 5      | 6         | 7      | 8         | 9      | 10       |
| B      | C         | N      | O         | F      | Ne       |
| 10.81  | 12.01     | 14.01  | 16.00     | 19.00  | 20.18    |
| 13     | 14        | 15     | 16        | 17     | 18       |
| Al     | Si        | P      | S         | Cl     | Ar       |
| 26.98  | 28.09     | 30.97  | 32.07     | 35.45  | 39.95    |
| 31     | 32        | 33     | 34        | 35     | 36       |
| Ga     | Ge        | As     | Se        | Br     | Kr       |
| 69.72  | 72.59     | 74.92  | 78.96     | 79.90  | 83.80    |
| 49     | 50        | 51     | 52        | 53     | 54       |
| In     | Sn        | Sb     | Te        | I      | Xe       |
| 114.82 | 118.71    | 121.75 | 127.60    | 126.90 | 131.29   |
| 81     | 82        | 83     | 84        | 85     | 86       |
| T1     | Pb        | Bi     | Po        | At     | Rn       |
| 204.38 | 207.2     | 208.98 | (209)     | (210)  | (222)    |
| •      | 114 (289) |        | 116 (289) |        |          |