Dr. Davies Organic I Chemistry Determination of isomers from molecular formula

Hydrocarbons containing only single bonds between carbon and hydrogen are said to be saturated. All noncyclic saturated hydrocarbons fit the formula C_nH_{2n+2} .

Suppose a molecule has a molecular formula of C_4H_{10} , is it saturated? Completing the formula, where n = 4 (the number of carbons), and 2(4)+2=10. Therefore, we conclude the molecule is saturated, and any 4 carbon noncyclic isomer with only single bonds will fit this formula.

Suppose our molecule has a formula of C_4H_8 . This compound is 2 hydrogens short of saturation, or equal to 1degree of unsaturation. Therefore, any 4 carbon isomer with 1 double bond, or 1 ring will fit this formula.

How does **oxygen** effect this formula? Not at all. If a compound has the formula C_3H_8O the compound is saturated. If the compound has a formula C_3H_6O , it has one degree of unsaturation in the form of a double bond or a ring.

For every **nitrogen** in the formula, one additional hydrogen needs to be added to the formula. Therefore, a compound with a formula of C_3H_9N would be saturated, while a compound with formula C_3H_7N would have one degree of unsaturation.

Halogens (F, Cl, Br, I) are similar to hydrogen in that they form one bond with other atoms. Therefore, for every halogen present subtract one hydrogen from the total. So C_3H_7Br is a saturated compound.

