Solve the following problems and staple your solutions to this cover sheet.

1. Sec $10.4 \# 10$

Hint: See the class notes.
2. Sec $10.6 \# 18$

Hint: Apply the property $\mathcal{F}(f(x))=\frac{1}{\pi} \frac{\sin (a \omega)}{\omega}$ for $f(x)=\left\{\begin{array}{ll}1, & |x|<a \\ 0, & |x|>a\end{array}\right.$, with $a=c t$. The final answer should be the same as the d'Alembert's solution.

Hint: Use Fourier cosine transform.
3. Sec 10.5 \#11(a)
4. Sec 10.6 \#4(a)

Hint: Rather than finding the inverse Fourier sine transform of $U_{S}(\omega, y)$ directly, find the inverse Fourier sine transform of $\frac{\partial U_{s}}{\partial y}: \frac{\partial u}{\partial y}(x, y)=\mathcal{S}^{-1}\left(\frac{\partial U_{s}}{\partial y}\right)=\mathcal{S}^{-1}\left(F_{S}(\omega) e^{-\omega y}\right)$. Then $u(x, y)=\int \frac{\partial u}{\partial y}(x, y) d y+c$. The final answer is $u(x, y)=\frac{1}{2 \pi} \int_{0}^{\infty} f(\xi) \ln \frac{(x-\xi)^{2}+y^{2}}{(x+\xi)^{2}+y^{2}} d \xi$.
5. Sec $9.5 \# 2$

Note: x_{0} and y_{0} are switched in part (b). Hint: See class notes.
6. Sec 9.5 \# 3(a)

Hint: Follow subsection 9.5 .3 or class notes. The eigenpairs are $\lambda_{n m}=\left[\frac{(2 n-1) \pi}{2 L}\right]^{2}+\left(\frac{m \pi}{H}\right)^{2}$, $\phi_{n m}(x, y)=\sin \frac{(2 n-1) \pi x}{2 L} \cos \frac{m \pi y}{H}$ for $n=1,2, \cdots$ and $m=0,1, \cdots$.
7. Sec 9.5 \# 4

Hint: Even though the boundary condition is not homogeneous, still use the Green's function with the properties $\nabla^{2} G=\delta\left(\mathbf{x}-\mathbf{x}_{s}\right)$ in the given region and $G=0$ on the boundary of the given region. Apply the three-dimensional version of Green's 2nd identity.
8. Sec 9.5 \# 6

Hint: For part (a), apply the Green's 2nd identity for functions u and ϕ_{h}. For part (b), assume $u=\sum_{\lambda} a_{\lambda} \phi_{\lambda}$ where $\nabla^{2} \phi=-\lambda \phi$. Show a_{0} can be chosen arbitrarily where $\iint_{\Omega} f \phi_{h} d A=0$ or $\lambda=0$
9. Free points!
10. Free points!

