Solve the following problems and staple your solutions to this cover sheet.

1. Sec 10.3 \#8
2. Sec 10.4 \#3(a)

Hint: Use the properties $\mathcal{F}(f(x-\beta))=e^{i \omega \beta} F(\omega)$ and $\mathcal{F}\left(\sqrt{\frac{\pi}{\beta}} e^{-\frac{x^{2}}{4 \beta}}\right)=e^{-\beta \omega^{2}}$, before applying the Convolution Theorem.
3. Sec $10.4 \# 4(a)$

Hint: Use the linearity property of the inverse Fourier transform, $\mathcal{F}^{-1}\left(e^{-\gamma t} H(\omega)\right)=e^{-\gamma t} \mathcal{F}^{-1}(H(\omega))$, before applying the Convolution Theorem.
4. Show that $\mathcal{F}\left(f^{\prime}(x)\right)=-i \omega \mathcal{F}(f(x))$, assuming $|f(x)| \rightarrow 0$ as $|x| \rightarrow \infty$.

Hint: See the class notes or section 10.4.
5. Show that $\mathcal{F}^{-1}(F(\omega) G(\omega))=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(\xi) g(x-\xi) d \xi$, where $F(\omega)=\mathcal{F}(f(x))$ and $G(\omega)=$ $\mathcal{F}(g(x))$.
Hint: See the class notes or section 10.4.
6. Sec 10.4 \#8

Hints: See the class notes. Since the hyperbolic sine is an odd function and $|\omega|= \pm \omega$, we can write $U(x, \omega)=A(\omega) \sinh (|w| x)+B(\omega) \sinh (|w|(L-x))$ as $U(x, \omega)=A(\omega) \sinh (w x)+$ $B(\omega) \sinh (w(L-x))$ by incorporating the minus signs into A and B, as needed. Also, $\mathcal{F}^{-1}\left(\frac{\sinh (\alpha \omega)}{\sinh (\beta \omega)}\right)=\frac{\pi}{\beta} \frac{\sin \left(\frac{\alpha \pi}{\beta}\right)}{\cosh \left(\frac{\pi y}{\beta}\right)+\cos \left(\frac{\alpha \pi}{\beta}\right)}$, if $0<\alpha<\beta$, and Fourier transform was with respect to the y variable.
7. Sec 10.4 \# 9

Hints: Assume $|u| \rightarrow 0$ as $y \rightarrow \infty$. See the class notes.
8. Use the Fourier transform to solve the ODE $y^{\prime \prime}(x)-b^{2} y(x)=f(x),-\infty<x<\infty$.

Hint: $\mathcal{F}\left(e^{-\beta|x|}\right)=\frac{\beta}{\pi\left(\omega^{2}+\beta^{2}\right)}$.
9. Free points!
10. Free points!

