Solve the following problems and staple your solutions to this cover sheet.

1. Solve

$$
\begin{array}{lll}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}-\frac{x}{L^{\prime}}, & \\
0<x<L, t>0 \\
u(0, t) & =0, & \\
u(L, t)=0, & & t>0 \\
u(x, 0) & =0, & \\
u(x<L
\end{array}
$$

Hint: Use $u_{E}=\frac{1}{6 k L} x^{3}-\frac{L}{6 k} x$. Find the constants. You may use Mathematica and results of an earlier problem!
2. Solve

$$
\begin{array}{llll}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}}, & & 0<x<L, t>0 \\
u(0, t) & =0, & & t>0 \\
u(L, t) & =0, & & t>0 \\
u(x, 0) & =f(x), & & 0<x<L \\
\frac{\partial u}{\partial t}(x, 0) & =g(x), & & 0<x<L
\end{array}
$$

using the method of seperation of variables.
Hint: You may use the Review, Identities, Theorems, Formulas and Tables hand-out.
3. Sec 8.2 \#6(a)

Hint: $u_{E}^{\prime \prime}=0$. You may use results of an earlier problem!
4. Solve

$$
\begin{array}{lll}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}}, & \\
u(0, t) & =0<x<L, t>0 \\
u(L, t) & =t, & \\
u(x, 0) & =\frac{1}{6} x^{3}-\frac{L^{2}}{6} x, & \\
t>0 & 0<x<L \\
\frac{\partial u}{\partial t}(x, 0) & =\frac{x}{L}, & \\
\frac{x}{L}, & 0<x<L
\end{array}
$$

Hint: $r(x, t)=\frac{x}{L} t$. Find the constants. You may use Mathematica and results of an earlier problem!
5. Sec 8.3 \#1(c)

Hints: Choose $r(x, t)=A(t)$. The related eigenfunctions are $\phi_{n}(x)=\sin \frac{(2 n-1) \pi x}{2 L}$.
6. Sec 8.3 \#7

Hints: Choose $r(x, t)=\frac{x}{L} t$. Apply the method of eigenfunction expansion to the remaining problem with the homogeneous boundary condition. Don't restate the solution of problem 2 !
7. Sec 8.3 \#6

Hints: For $n \neq 5, a_{n}^{\prime}(t)=-n^{2} a_{n}(t)$ and for $n=5, a_{5}^{\prime}(t)=-25 a_{5}(t)+e^{-2 t}$.
8. Prove $\int_{a}^{b}[u L(v)-v L(u)] d x=\left.p(x)\left(u \frac{d v}{d x}-v \frac{d u}{d x}\right)\right|_{a} ^{b}$ where $L(u)=\frac{d}{d x}\left[p(x) \frac{d u}{d x}\right]+q(x) u$.

Hint: See the lecture notes.
9. Sec $5.5 \# 1(\mathrm{~b})$

Note: $L(u)=\frac{d}{d x}\left[p(x) \frac{d u}{d x}\right]+q(x) u$.
10. Free points!

