Solve the following problems and staple your solutions to this cover sheet.

1. Sec 2.3 \#3(d)

Notes: Find the constants. You may use the Review, Identities, Theorems, Formulas and Tables hand-out and Mathematica!
2. Sec 8.2 \#1(d)

Hints: $u_{E}^{\prime \prime}=-1$. You may use results of an earlier problem!
3. Sec 2.4 \#1(a)

Notes: Find the constants. You may use the Review, Identities, Theorems, Formulas and Tables hand-out and Mathematica!
4. Sec 8.2 \#1(c)

Hint: Can use $u_{E}(x)=A x$! You may use results of an earlier problem!
5. Sec 8.2 \#1(f)

Hints: $u_{E}(x)=\frac{L^{2}}{4 k \pi^{2}} \sin \frac{2 \pi x}{L}-\frac{L}{2 k \pi} x$. You may use results of an earlier problem!
6. Sec 2.4 \#2* Change the B.C.'s of problem 2.4.2 to $u(0, t)=0$ and $\frac{\partial u}{\partial x}(L, t)=0$.

Hint: You may use the Review, Identities, Theorems, Formulas and Tables hand-out.
7. Sec 8.2 \#1(a)

Hint: You may use results of an earlier problem!
8. Sec 8.2 \#1(b)

Hints: There is no equilibrium solution! In addition to showing this mathematically, try to give a physical reason for it. Find a reference function $r(x)$ such that $r^{\prime}(0)=0$ and $r^{\prime}(L)=B$. In this case, you are asked to only reduce the problem to a one with homogeneous boundary conditions.
9. Sec 8.2 \#2(b)
10. Free points!

