A Partial List of Corrections to the Boundary Value Problems by David L. Powers, Sixth Edition

	Location	Original	Correction
1.	Chapter 1, Misc Exer 7(f)	f(x) = x	f(x) = 0
2.	Chapter 1, Misc Exer 8	f(x) = 0	f(x) = x
3.	Sec 2.1, Exer 3	What is $g \cdots$	What is the replacement of $A\Delta xg \cdots$
4.	Sec 3.2, Exer 12	f(x) is as in Eq. (11)	f(x) is as in the example in page 221.
5.	Sec 3.4, Exer 8	u(x, t) = f(x)	u(x, 0) = f(x)
6.	Page 323, Equation (3)	$\phi(r,\pi)$	$\phi(r, heta)$
7.	Page 381, Equation for $\mathcal{L}(f''(t))$	$= -f(0) + \dots = -f(0) - \dots$	$= -f'(0) + \dots = -f'(0) - \dots$
8.	Page 381, Equation for $\mathcal{L}(f^{*}(t))$ Page 457, Solution to Exer 3, Sec 1.9	$\begin{cases} 1 & \text{for } 0 < x < 1 \\ 0 & \text{for } 1 < x \end{cases}$	$\begin{cases} 1 & \text{for } 0 < \lambda < 1 \\ 0 & \text{for } 1 < \lambda \end{cases}$
9.	Page 466, Solution to Exer 3, Sec 2.10	Eq. (6)	Eq. (9)
10.	Page 471, Solution to Exer 5, Sec 3.3	$u(0.5a, 1.2a/c) = -0.2\alpha a$	$u(0.5a, 1.2a/c) = \alpha a/2$
11.	Page 490, Solution to Exer 1, Chap 5, Misc Exer	$\mu_m = m\pi b$	$\mu_m = m\pi/b$
12.	Page 491, Solution to Exer 3, Chap 5, Misc Exer	$\sum_{n=1}^{\infty} \cdots$	$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\cdots$