Due 10/06/2023, 8:30 a.m., before start of the class.
Solve the following problems and staple your solutions to this cover sheet.
For problems 1-6, let $f(x)=x^{2}, h(x)=\frac{1}{3} x^{3}-\frac{\pi^{2}}{3} x$, and $k(x)=x^{3}$, all for $0<x<\pi$. In an earlier homework we found the Fourier cosine series of f, and by applying the convergence theorem, we can show that $x^{2}=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n x)$ for $0 \leq x \leq \pi$. (Notice the equality holds at the endpoints. Do you know why?)

1. Show $x^{2}=\sum_{n=1}^{\infty} \frac{2\left[\left(2-n^{2} \pi^{2}\right)(-1)^{n}-2\right]}{n^{3} \pi} \sin (n x)$ for $0 \leq x<\pi$, by finding the Fourier sine series of f and discussing its convergence. Pay attention to the endpoints! Note: You may use Mathematica or Review, Identities, Formulas and Theorems for integration.
2. Determine which of the above two Fourier series of f can be differentiated term-by-term and use the appropriate one to find a Fourier series for $f^{\prime}(x)=2 x, 0<x<\pi$. Explain!
Hints: Determine whether f satisfies the required hypotheses for term-by-term integration for the F. cosine series or F. sine series. Then apply the term-by-term differentiation to the appropriate series.
3. Use the result of the last problem to show that $2 x=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n} \sin (n x)$ for $0 \leq x<\pi$ and $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9} \cdots=\frac{\pi}{4}$.

Hints: Solve the last problem correctly and apply the convergence theorem to the new F. series. Evaluate the equation at an appropriate x value. Note: Pay attention to the equality at $x=0$.
4. Show $h(x)=\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{3}} \sin (n x)$ for $0 \leq x \leq \pi$, by term-by-term integration of the given Fourier cosine series of f.
Note: Be sure to apply the convergence theorem to show the equality at the endpoints.
5. Use the result of problems 3 and 4 to find the Fourier sine series of $k(x)$.
6. Can we differentiate the Fourier sine series of $h(x)$ term-by-term? Explain! Can we differentiate the Fourier sine series of $k(x)$ term-by-term? What is the difference? Explain!
7. Free points!
8. Free points!
9. Free points!
10. Free points!

