Due $9 / 22 / 2023,8: 30$ a.m., before start of the class.
Solve the following problems and staple your solutions to this cover sheet.

1. Find the Fourier sine series of $f(x)=\left\{\begin{array}{ll}\frac{2 x}{a}, & 0<x \leq \frac{a}{2} \\ 2-\frac{2 x}{a}, & \frac{a}{2}<x \leq a\end{array}\right.$, where a is a positive constant.

Hint: Use $\int_{0}^{a}=\int_{0}^{\frac{a}{2}}+\int_{\frac{a}{2}}^{a}$ and apply the integration by parts technique.
2. See 1.3 \#2(a, b)
3. See 1.3 \#2(c, d)
4. Graph the Fourier series of the function $f(x)=\left\{\begin{array}{ll}-x-2 & \text { for }-2 \leq x<-1 \\ x & \text { for }-1 \leq x \leq 1 \\ -x & \text { for } 1<x \leq 2\end{array}\right.$ for the interval $-7 \leq x \leq 7$. Note: Do not find its Fourier coefficients!
Hint: Use the convergence theorem of Fourier series.
5. Find and use the Fourier cosine series of $f(x)=x^{2}, 0<x<\pi$, to show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Hint: For integration, do integration by parts twice, or use Review, Identities, Formulas and Theorems or Mathematica. Note: There are calculus based proofs of this result!
6. See 1.3 \#4

Hints: Consider odd and even extensions of the function. Pay special attention to the endpoints $x=0$ and $x=a$.
7. See 1.3 \#5
8. See 1.3 \#6
9. Free points!
10. Free points!

