Due 12/04/2023, 8:30 a.m., before start of the class.
Solve the following problems and staple your solutions to this cover sheet.

1. Sec 5.3 \# 6

Hint: See the class notes.
2. Solve the following two-dimensional EVP, by converting it to two one-dimensional EVP's.

$$
\begin{aligned}
& \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=-\lambda \phi(x, y), \quad 0<x<a, 0<y<b \\
& \frac{\partial \phi}{\partial y}(x, 0)=\frac{\partial \phi}{\partial y}(x, b)=0, \quad 0<x<a \\
& \frac{\partial \phi}{\partial x}(0, y)=\frac{\partial \phi}{\partial x}(a, y)=0, \quad 0<y<b
\end{aligned}
$$

Note: Do not just quote the final answer from Review, Identities, Formulas and Theorems. Just use it for the solutions of one-dimensional EVP's. Hint: Let $\phi(x, y)=X(x) Y(y)$.
3. Sec 5.3 \# 7(b)

Note: The boundary conditions are $\frac{\partial u}{\partial x}(0, y, t)=\frac{\partial u}{\partial x}(a, y, t)=\frac{\partial u}{\partial y}(x, 0, t)=\frac{\partial u}{\partial y}(x, b, t)=0$. Use the result of problem 2 or the Review, Identities, Formulas and Theorems for the solution of the two-dimensional EVP and the constants formulas. Find the constants!
4. Sec 5.4 \# 5
5. Sec 5.4 \# 6
6. Sec 5.5 \# 1

Hint: Start with the general solution stated in the book, right before this problem, and apply the boundary conditions and use the properties of Bessel functions.
7. Sec 5.6 \# 3

Hint: Add the condition: $v(0, t)$ bounded. See class notes. Calculate the constants using a u-substitution and the Bessel function property: $\int x J_{0}(x) d x=x J_{1}(x)+C$.
8. Solve

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, & 0<r<a, t>0 \\
u(a, t)=0, & t>0 \\
u(0, t) \text { bounded, } & t>0 \\
u(r, 0)=f(r), & 0<r<a \\
\frac{\partial u}{\partial t}(r, 0)=0, & 0<r<a .
\end{array}
$$

Hint: See class notes.
9. Free points!
10. Free points!

