Due 11/03/2023, 8:30 a.m., before start of the class.
Solve the following problems and staple your solutions to this cover sheet.

1. Sec $3.1 \# 3$
2. Sec $3.2 \# 4$

Hints: Use Review, Identities, Formulas and Theorems for solving the EVP. It is trivial to find the constants!
3. Sec $3.2 \# 12$

Hints: Use Review, Identities, Formulas and Theorems for solving the EVP. The solution will be of the form $u=\sum_{n=1}^{\infty} e^{-k t}\left[a_{n} \cos \left(\nu_{n} t\right)+b_{n} \sin \left(\nu_{n} t\right)\right] \sin \frac{n \pi x}{a}$, for some ν_{n} values. Find the constants a_{n} and b_{n}. (You may use Mathematica for integration.) Also, $\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{a}=0$ implies that $c_{n}=0$ for $n=1,2, \cdots$. (Why?)
4. Sec $3.2 \# 13$

Hints: The solution will be of the form $u=\sum_{n-1}^{\infty}\left[a_{n} \cos \left(\nu_{n} c t\right)+b_{n} \sin \left(\nu_{n} c t\right)\right] \sin \frac{n \pi x}{a}$, for some ν_{n} values. See the hint in the last problem.
5. Sec 3.3 \#3
6. Sec $3.3 \# 4$
7. Suppose that $\phi(w)$ and $\psi(z)$ are twice differentiable functions. Show that $u(x, t)=$ $\phi(x+c t)+\psi(x-c t)$ satisfies the wave equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$.
8. (a). Show that if $g(x)$ is an even (or odd) function, then $G(x)=\int_{0}^{x} g(\xi) d \xi$ is an odd (or even function). (b). Show that if g is an odd p-periodic function, then $\int_{0}^{p} g(x) d x=0$.
Hints: $G(-x)=\int_{0}^{-x} g(\xi) d \xi$. Use substitution $u=-\xi$. In an earlier HW, we showed that if piecewise continuous function $g(x)$ is p-periodic, then $\int_{c}^{c+p} g(x) d x=\int_{0}^{p} g(x) d x$. Use $c=-p / 2$.
Remark: From this problem and an earlier HW, if piecewise continuous function $g(x)$ is p periodic and $\int_{0}^{p} g(x) d x=0$ (or g is an odd function), then $G(x)=\int_{0}^{x} g(\xi) d \xi$ is also a p-periodic function (and $G(x)$ is an even function).
9. Solve

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, & 0<x<a, t>0 \\
u(0, t)=u(a, t)=0, & t>0 \\
u(x, 0)=f(x), & 0<x<a \\
\frac{\partial u}{\partial t}(x, 0)=g(x), & 0<x<a
\end{array}
$$

using the d'Alembert's solution.
Hint: Start with $u(x, t)=\phi(x+c t)+\psi(x-c t)$. Be sure to explain how the extensions of f and G or g are made. See the class notes.
10. Free points!

