Due $9 / 30 / 2022,12: 30$, before start of the class.

Solve the following problems and staple your solutions to this cover sheet.

1. Sec $2.3 \# 3(\mathrm{~d})$ Notes: Show all steps in separation of variables. Either solve the EVP by discussing all three cases or use the result of an earlier HW. Either derive the formula for constants B_{n} or use the result of an earlier HW. Perform the integration to find the value of constants B_{n}. Since $u(x, 0)$ is a step function, we must break up the integral from 0 to L to sum of integrals from 0 to $L / 2$ and from $L / 2$ to L. Also, $\cos n \pi=(-1)^{n}$.
2. Solve the following.

$$
\begin{aligned}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} & , 0<x<\pi, t>0 \\
u(0, t)=u(\pi, t)=0 & , t>0 \\
u(x, 0)=x & , 0<x<\pi
\end{aligned}
$$

Notes: State all steps. However, you may skip easy parts or recall work done in an earlier homework. Calculate the constants B_{n}. Yes, $k=1$ and $L=\pi$ in this problem!
3. Find all nontrivial solutions of the eigenvalue value problem $\phi^{\prime \prime}(x)=-\lambda \phi$, for $0 \leq x \leq L$, and $\phi^{\prime}(0)=\phi^{\prime}(L)=0$.
Hints: Consider the cases $\lambda<0$ or $\sqrt{-\lambda}=\mu>0, \lambda=0$ and $\lambda>0$ or $\sqrt{\lambda}=\mu>0$, in that order. For a peek at the solution, see Sec 2.4.1. The answer is also in Review, Identities, Theorems, Formulas and Tables handout.
4. Suppose $f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}$ for $0 \leq x \leq L$. Show that $A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x$ and $A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x$ for $n=1,2, \cdots$. Hint: See class notes. You may interchange the order of integration and summation and use the orthogonality results from an earlier HW.
5. Solve the following.

$$
\begin{aligned}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} & , 0<x<\pi, t>0 \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(\pi, t)=0 & , t>0 \\
u(x, 0)=\cos x & , 0<x<\pi
\end{aligned}
$$

Notes: State all steps. However, you may skip easy parts or recall the work done in an earlier homework or above. No integration is necessary for finding constants A_{0} and A_{n} !
6. Find all nontrivial solutions of the boundary value problem $\phi^{\prime \prime}(x)=-\lambda \phi$, for $-L \leq x \leq L$, with periodic boundary conditions $\phi(-L)=\phi(L)$ and $\phi^{\prime}(-L)=\phi^{\prime}(L)$.
Hints: Consider the cases $\lambda<0$ or $\sqrt{-\lambda}=\mu>0, \lambda=0$ and $\lambda>0$ or $\sqrt{\lambda}=\mu>0$, in that order. There are two eigenfunctions for each positive eigenvalue! For a peek at the solution, see Sec 2.4.2. The answer is also in Review, Identities, Theorems, Formulas and Tables handout.
7. Suppose $f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}$ for $-L \leq x \leq L$. Show that $a_{0}=$ $\frac{1}{2 L} \int_{-L}^{L} f(x) d x, a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x$ and $b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x$ for $n=1,2, \cdots$. Hint: See class notes. You may interchange the order of integration and summation and use the orthogonality results from an earlier HW.
8. Solve the following.

$$
\begin{aligned}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} & ,-L<x<L, t>0 \\
u(-L, t)=u(L, t) & , t>0 \\
\frac{\partial u}{\partial x}(-L, t)=\frac{\partial u}{\partial x}(L, t) & , t>0 \\
u(x, 0)=f(x) & ,-L<x<L
\end{aligned}
$$

Notes: State all steps. However, you may skip easy parts or recall work done in an earlier homework or above.
9. Free points!
10. Free points!

