Due $9 / 16 / 2022,12: 30$, before start of the class.
Solve the following problems and staple your solutions to this cover sheet.

1. Sec 1.2 \#1 (a, b)
2. Sec 1.3 \# 1

Hint: Repeat the argument for equation 1.3.4. Also, see class notes.
3. Sec 1.4 \# (d, e)

Hint: The PDE is $c \rho \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}}$. The time independent solution satisfies $\frac{d^{2} u}{d x^{2}}=-\frac{Q}{K_{0}}$.
4. Sec 1.4 \# 1 (f, g)

Hint: The PDE is $c \rho \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}}$. The time independent solution satisfies $\frac{d^{2} u}{d x^{2}}=-\frac{Q}{K_{0}}$.
In the next four problems, we derive the two-dimensional Laplacian in polar coordinates.
Note: In place of next four problems, you may solve problem \#3 in section 1.5.
5. Show that $\frac{\partial r}{\partial x}=\cos \theta, \frac{\partial \theta}{\partial x}=-\frac{\sin \theta}{r}, \frac{\partial r}{\partial y}=\sin \theta$ and $\frac{\partial \theta}{\partial y}=\frac{\cos \theta}{r}$.

Hint: See class notes.
6. Show that $\frac{\partial^{2} u}{\partial x^{2}}=\cos ^{2} \theta \frac{\partial^{2} u}{\partial r^{2}}-\frac{2 \sin \theta \cos \theta}{r} \frac{\partial^{2} u}{\partial \theta \partial r}+\frac{\sin ^{2} \theta}{r} \frac{\partial u}{\partial r}+\frac{\sin ^{2} \theta}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{2 \sin \theta \cos \theta}{r^{2}} \frac{\partial u}{\partial \theta}$.

Hint: See class notes.
7. Show that $\frac{\partial^{2} u}{\partial y^{2}}=\sin ^{2} \theta \frac{\partial^{2} u}{\partial r^{2}}+\frac{2 \sin \theta \cos \theta}{r} \frac{\partial^{2} u}{\partial r \partial \theta}+\frac{\cos ^{2} \theta}{r} \frac{\partial u}{\partial r}+\frac{\cos ^{2} \theta}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}-\frac{2 \sin \theta \cos \theta}{r^{2}} \frac{\partial u}{\partial \theta}$. Hint: See class notes.
8. Show that $\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$.

Hint: See class notes.
9. Free points!
10. Free points!

