Due 9/9/2022, 12:30 p.m., before start of the class.

Solve the following problems and staple your solutions to this cover sheet.
ODE Review: A general solution of the ODE $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$ is of the form $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ where c_{1} and c_{2} are constants and 1. y_{1} and y_{2} are two solutions of this ODE and 2. y_{1} and y_{2} are linearly independent. Two solutions y_{1} and y_{2} of this ODE are linearly independent if their Wronskian is not zero: $W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} \neq 0$.
For the next three problems, consider the ODE $\phi^{\prime \prime}(x)=r^{2} \phi(x)$, where r is a positive constant. We know that $\phi_{1}(x)=e^{-r x}$ and $\phi_{2}(x)=e^{r x}$ are two linearly independent solutions of it and its general solution is $\phi(x)=c_{1} e^{-r x}+c_{2} e^{r x}$.

1. Show that $\phi(x)=c_{1} \cosh (r x)+c_{2} \sinh (r x)$ is also a general solution of the above ODE.
2. Show that $\phi(x)=c_{1} \cosh \left[r\left(x-x_{0}\right)\right]+c_{2} \sinh \left[r\left(x-x_{0}\right)\right]$, where x_{0} is a constant, is another general solution of the above ODE.
3. Show that $\phi(x)=c_{1} \sinh \left[r\left(x-x_{0}\right)\right]+c_{2} \sinh (r x)$, where x_{0} is a nonzero constant, is yet another general solution of the above ODE. Note: $\sinh z=0$ if and only if $z=0$.

Hints for Problems 1-3: In each case, show that 1. each of the given functions is a solution of the ODE and 2. the two given functions are linearly independent. For the definitions and properties of hyperbolic trigonometric functions, $\sinh x$ (pronounced "cinch of x ") and $\cosh x$ (pronounced "kosh of x "), see Review, Identities, Theorems, Formulas and Tables.
4. Suppose f is an even differentiable function. Show that f^{\prime} is an odd function.

Hint: Since f is an even function, $f(-x)=f(x)$ for all x in the domain of f. Differentiate $f(-x)=f(x)$ using implicit differentiation.
5. Suppose f is an odd differentiable function. Show that f^{\prime} is an even function.

Hint: Since f is an odd function, $f(-x)=-f(x)$ for all x in the domain of f. Differentiate $f(-x)=-f(x)$ using implicit differentiation.
6. Suppose differentiable function f is periodic with period p. Show that f^{\prime} is also a periodic function with period p.
Hint: Since f is p-periodic, $f(x+p)=f(x)$ for all x in the domain of f. Differentiate $f(x+p)=f(x)$ using implicit differentiation.
7. Suppose (piecewise) continuous function g is periodic with period p. Show that
$\int_{c}^{c+p} g(x) d x=\int_{0}^{p} g(x) d x$ for any number c.
Hints: $\int_{c}^{c+p} g(x) d x=\int_{c}^{p} g(x) d x+\int_{p}^{c+p} g(x) d x$. In the second integral, apply the u-substitution, $u=x-p$, and the periodicity property of g. Then, combine the two integrals.
8. Suppose (piecewise) continuous function g is periodic with period p and $\int_{0}^{p} g(x) d x=0$. Show that $G(x)=\int_{0}^{x} g(t) d t$ is also a periodic function with period p.
Hint: Write $G(x+p)=\int_{0}^{x+p} g(t) d t$ as the sum of two appropriate integrals and use the result of the last problem to show $G(x+p)=G(x)$.
9. Free points!
10. Free points!

