Due 12/9/2022, 12:30, before start of the class.
Solve the following problems and staple your solutions to this cover sheet. You may use results in Review, Identities, Formulas and Theorems handout.

1. Sec $7.7 \# 1$

Hints: Assume $u(r, \theta, t)=f(r) \sin 3 \theta h(t)$ and that u is defined at $r=0$. You may use results in Review, Identities, Formulas and Theorems handout.
2. Sec $7.7 \# 10$

Hints: Assume $u(r, \theta, t)=f(r) g(t)$ and that u is defined at $r=0$. You may use results in Review, Identities, Formulas and Theorems handout.
3. Sec $7.8 \# 2(\mathrm{a}, \mathrm{b})$

Hint: You can show $\lambda>0$ by either discussing the three cases, $\lambda<0, \lambda=0$, and $\lambda>0$ or deriving a Raleigh type quotient for λ.
4. Sec $7.9 \# 1$ (b)

Hints: Assume $u(r, \theta, z)=f(r) \sin 7 \theta h(z)$ and that u is defined at $r=0$. You may use results in Review, Identities, Formulas and Theorems handout.
5. Sec $8.2 \# 1$ (b)

Hints: There is no equilibrium solution! In addition to showing this mathematically, try to give a physical reason for it. Find a reference function $r(x)$ such that $r^{\prime}(0)=0$ and $r^{\prime}(L)=B$. You are asked to only reduce the problem to a one with homogeneous boundary conditions.
6. Sec $8.2 \# 2(b)$

Hints: Look for reference function $r(x, t)$ such that $r(0, t)=A(t)$ and $\frac{\partial r}{\partial x}(L, t)=B(t)$. You are asked to only reduce the problem to a one with homogeneous boundary conditions.
7. Solve

$$
\begin{array}{llll}
\frac{\partial u}{\partial t} & =k \frac{\partial^{2} u}{\partial x^{2}}-\frac{x}{L}, & & 0<x<L, t>0 \\
u(0, t) & =0, & & t>0 \\
u(L, t) & =0, & & t>0 \\
u(x, 0) & =0, & & 0<x<L
\end{array}
$$

Hint: $u_{E}=\frac{1}{6 k L} x^{3}-\frac{L}{6 k} x$. Find the constants. You may use Mathematica and results of an earlier problem!
8. Sec $8.2 \# 6(a)$
9. Sec $8.2 \# 6(\mathrm{~b})$

Hint: $u_{E}=-\frac{1}{2 c^{2}} x^{2}+\frac{L}{2 c^{2}} x$.
10. Free points!

