Due Tuesday, Nov 13

Solve the following problems and staple your solutions to this cover sheet.

- 1. Exercise 7.1
- 2. Exercise 7.10
- 3. Exercise 7.17
- 4. Exercise 7.18
- 5. Exercise 7.19
- 6. Exercise 7.20
- 7. Exercise 7.22
- 8. Suppose Z_1 , \cdots , Z_5 is a random sample from the standard normal distribution, find a number z such that $P\left(\sum_{i=1}^5 Z_i^2 \le z\right) = 0.95$.
- 9. Consider a normally distributed population with mean 12 and variance 4. Suppose n sample points Y_1 , \cdots , Y_n are chosen randomly from this population. Let $\overline{Y} = \sum_{i=1}^n Y_i$. Find the value of n for which $P(|\overline{Y} 12| < 0.5) = 0.95$.
- 10. Let Z_1 , \cdots , Z_5 be an independent random sample from a standard normal distribution and let $Y = \sum_{i=1}^5 Z_i^2$. Suppose the random variable X, which is independent from the Z's and Y, has a χ^2 distribution with 4 degrees of freedom. Find a number a such that $P(Y \leq a) = 0.95$. Find a number b such that $P\left(\frac{Z_1}{\sqrt{\frac{X}{4}}} > b\right) = 0.90$. Find a number c such that $P\left(\frac{\frac{Y}{5}}{\frac{X}{4}} > c\right) = 0.025$.