
Math 3280 HOMEWORK #2 Name:

Due 1/16/2026, 11:30 a.m., before start of the class

Solve the following problems and staple your solutions to this cover sheet. (Com-
puter outputs must be put in the appropriate place in the solution, not attached
as an appendix. You may physically cut and paste the output in the problem or
allow appropriate space in the printout to add your hand written work.)

1. Chap 1, Exer 1(a). Note: Find the general solution and hand draw several solution curves.
The constant C can be a negative number.

2. Chap 1, Exer 1(a). Note: Solve using Mathematica and plot the direction field and several
solution curves on the same coordinate system. See attached, your first HW, or your book for
Mathematica commands.

3. Chap 1, Exer 1(e). Note: Find the general solution and use the ContourPlot of Mathematica
to plot several solution curves. See attached, your first HW, or your book for Mathematica
commands.

4. Chap 1, Exer 1(e). Note: Solve using Mathematica and plot the direction field and several
solution curves on the same coordinate system. See attached, your first HW, or your book for
commands.

5. Find the explicit solution of IVP (2t− x) + (2x− t)dx
dt

= 0 , x(1) = 3 .

6. Chap 1, Exer 6. Note: Assume k > 0. Discuss the long term behavior of the solution.

7. Solve the following nonlinear planar decoupled system with the given initial conditions.

dx

dt
= x y

dy

dt
= 2y

(x(0), y(0)) = (1, 1)

Hint: First solve the 2nd equation.

8. Chap 1, Exer 8. Hints: The initial conditions are σA(0) = σB(0) = 0 . Solve for σA and use
it to solve for σB . The mass is σB V .

9. Chap 1, Exer 10(a)(ii). Note: Solve the ODE to determine the values of t for which the
solution x(t) is defined.

10. Chap 1, Exer 10(b). Note: In the back the answer is for if this problem was in part a.
To answer it correctly, consider the existence and uniqueness theorem discussed in class with
f(t, x) = 2

√
x and find all initial values (t0, x0) that satisfy the hypothesis of that theorem.





Mathematica Commands

To plot the curve defined by f(x, y) = k use

ContourPlot[f(x, y)==k, {x,a,b}, {y,c,d}]

where a, b and c, d are the lower and upper range values of x and y, respectively.
To plot the curves f(x, y) = k1 , · · · , f(x, y) = kn, on the same coordinate system, use

ContourPlot[{f(x, y)==k1 , · · · , f(x, y)==kn}, {x,a,b}, {y,c,d}] .

Consider ODE x′(t) = f(t, x). To solve it use

DSolve[x’[t]==f(t, x), x[t], t]

with x in function f(t, x) typed in as x[t]. The last two terms indicate that x is the unknown
function of t and the independent variable is t. To solve the IVP x′(t) = f(t, x), x(t0) = x0 use

DSolve[{x’[t]==f(t, x), x[t0]==x0}, x[t], t]

with x in function f(t, x) typed in as x[t]. Use NDSolve if the IVP can’t be solved exactly. In this
case, replace the last t, which indicates the independent variable, with a range of values of it: {t,
a, b}. The solution can be graphed using

Plot[Evaluate[x[t] /. %], {t,a,b}, PlotRange->{{a,b},{c,d}}]

where a, b and c, d are the lower and upper range values of t and x, respectively. The symbol
/. means replace and % recalls the last output, so x[t] /. % means replace x[t] with the last
output.

Consider ODE x′(t) = f(t, x). Its direction field can be graphed using the VectorPlot command
and StreamPlot shows the flow with embedded arrowheads. Do not use StreamPlot in place of
graphing actual solutions.

VectorPlot[{1,f(t, x)}, {t,a,b}, {x,c,d}], VectorScaling->Automatic]

StreamPlot[{1,f(t, x)}, {t,a,b}, {x,c,d}]

with x in function f(t, x) typed in as just x. In some situations, for better visualization, it might
be necessary to draw all vectors with the same length. To do this try the following.

VectorPlot[{1,f(t, x)}, {t,a,b}, {x,c,d}]]

To graph the direction field of ODE x′(t) = f(t, x) and several solutions corresponding to
the initial conditions x(t0) = x1 , · · · , x(t0) = xn, where x1 through xn are equally spaced with
difference between any two consecutive terms d, do the following.

graph1=VectorPlot[{1,f(t, x)}, {t,a,b}, {x,c,d}, VectorScaling->Automatic]

Table[NDSolve[{x’[t]==f(t, x), x[t0]==x0}, x[t], {t,a,b}], {x0,x1, xn, d}]

(The x in function f(t, x) in NDSolve is typed in as x[t]. The initial values x0 are

from x1 to xn in steps of d.)

graph2=Plot[Evaluate[x[t] /. %], {t,a,b}, PlotRange->{{a,b},{c,d}}]

Show[{graph2, graph1}]



Below are the exact commands needed for this homework!

]:=

graph1a1 VectorPlot 1, y x , x, 10, 10 , y, 10, 10 , VectorScaling Automatic ;
Table DSolve y' x y x x, y 10 y0 , y x , x , y0, 10, 10, 1 ;
graph1a2 Plot Evaluate y x . , x, 10, 10 , PlotRange 10, 10 , 10, 10 ;
Show graph1a2, graph1a1

The modifier VectorScaling->Automatic in the VectorPlot results in the direction field, as it is
defined. However, sometimes, due to the size differences of the vectors, it might be hard to see the
flow.  In that case, dropping the modifier solves this problem by producing vectors of the same
length, but not the correct direction field (correct directions but incorrect lengths). If the vectors
are only intended to be a visual guide and not the direction field, drop the modifier: graph1a1 =
VectorPlot[{1, -y/x},{x,-10,10},{y,-10,10}].

]:=

ContourPlot y^4 2 x^2 y^2 1, y^4 2 x^2 y^2 4, y^4 2 x^2 y^2 9 ,
x, 2, 3 , y, 3, 2

]:=

graph1e1
VectorPlot 1, x y x^2 y^2 , x, 2, 3 , y, 3, 2 , VectorScaling Automatic ;

Table NDSolve y' x x y x x^2 y x ^2 , y 2 y0 , y x , x, 2, 3 ,
y0, 3, 2, 0.5 ;

graph1e2 Plot Evaluate y x . , x, 2, 3 , PlotRange 2, 3 , 3, 2 ;
Show graph1e2, graph1e1

Here numerical solution, NDSolve, is used since although Mathematica could find the explicit
solutions, it also had the error messages that it might not have found all solutions.


