Elementary Linear Algebra Sample Final Exam - Part II - 4 pages Math 2270

NAME: _____

Time Limit: 1 Hour Calculator Allowed: Scientific

The point value of each problem is in the left-hand margin. You must show your work to receive full credit for your answers, except on problem 1. Work neatly.

(10) 1. True or False.

- () (a) AB = BA for all square matrices A and B of the same size.
- (b) The square matrix A is invertible iff it is row equivalent to the identity matrix.
- () (c) The characteristic polynomial of the square matrix A in the variable λ is det $(A \lambda I)$.
- () (d) Every square matrix is diagonalizable.
- () (e) Any collection of n linearly independent vectors in \Re^n form a basis for \Re^n .
- () (f) Let A be an $n \times n$ invertible matrix. Then the equation $A\vec{x} = \vec{b}$ has a unique solution for every vector \vec{b} in \Re^n .
- () (g) If the equation $A\vec{x} = \vec{0}$ has 2 free variables, then the dimension of Nul A is 2.
- () (h) $\dim(\operatorname{Col} A) + \dim(\operatorname{Nul} A) = \operatorname{Number}$ of rows of A.
- () (i) Suppose \vec{u} and \vec{v} are nonzero vectors and $\vec{u} \cdot \vec{v} = 0$. Then \vec{u} and \vec{v} are linearly dependent.
- () (j) It is possible for a 2×2 matrix with real-valued entries to have eigenvalues 3 and i.

(10) 2. State the definition of a subspace of vector space V.

Math 2270 - Sample Final Exam

(5) 3. Suppose the coordinates of \vec{x} relative to the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1\\-2\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\-5 \end{bmatrix}, \begin{bmatrix} 3\\-2\\0 \end{bmatrix} \right\}$ is $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\-4\\3 \end{bmatrix}$. Find \vec{x} .

page 2

(10) 4. Let $A = \begin{bmatrix} 1 & 5 \\ -1 & -3 \end{bmatrix}$. Find eigenvalues of A. Show that A is similar to matrix of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ by finding an appropriate invertible matrix P.

(10) 5. Find a basis for the subspace $H = \left\{ \begin{bmatrix} 3a+b+c\\ -b+2c\\ -a-c \end{bmatrix} : a, b, c \in \Re \right\}$. Note: Basis vectors must be linearly independent!

Math 2270 - Sample Final Exam

(15) 6. Matrices
$$A = \begin{bmatrix} 2 & 4 & 1 & 6 & 1 \\ 3 & 6 & 2 & 7 & 0 \\ 2 & 4 & 0 & 10 & 4 \\ 3 & 6 & 2 & 7 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 4 & 1 & 6 & 1 \\ 0 & 0 & 1 & -4 & -3 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ are row equivalent. Find bases for

the column space, row space and null space of A and state the dimension of each one.

(10) 7. Given $A = \begin{bmatrix} 3 & 2 & 3 \\ -6 & -1 & 5 \\ -6 & 2 & 1 \end{bmatrix}$. Find its LU factorization.

Math 2270 - Sample Final Exam

(10) 8. Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & -3 & 2 \\ -1 & -2 & 1 \end{bmatrix}$$

(10) 9. Given the vector space $V = \text{Span} \left\{ \begin{bmatrix} 5\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\0 \end{bmatrix} \right\}$. Find an orthogonal basis for V.

Γ 1

n

(10) 10. Compare the values of determinants of the matrices $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ and $B = \begin{bmatrix} \frac{a}{3} & \frac{h}{3} & \frac{i}{3} \\ d-2a & e-2b & f-2c \\ a & b & c \end{bmatrix}$.