Elementary Linear Algebra
Sample Final Exam - Part II - 4 pages
Math 2270

NAME:
Time Limit: 1 Hour Calculator Allowed: Scientific
The point value of each problem is in the left-hand margin. You must show your work to receive full credit for your answers, except on problem 1. Work neatly.
(10) 1. True or False.
() (a) $A B=B A$ for all square matrices A and B of the same size.
() (b) The square matrix A is invertible iff it is row equivalent to the identity matrix.
() (c) The characteristic polynomial of the square matrix A in the variable λ is $\operatorname{det}(A-\lambda I)$.
() (d) Every square matrix is diagonalizable.
() (e) Any collection of n linearly independent vectors in \Re^{n} form a basis for \Re^{n}.
() (f) Let A be an $n \times n$ invertible matrix. Then the equation $A \vec{x}=\vec{b}$ has a unique solution for every vector \vec{b} in \Re^{n}.
() (g) If the equation $A \vec{x}=\overrightarrow{0}$ has 2 free variables, then the dimension of $\operatorname{Nul} A$ is 2 .
() (h) $\operatorname{dim}(\operatorname{Col} A)+\operatorname{dim}(\operatorname{Nul} A)=$ Number of rows of A.
() (i) Suppose \vec{u} and \vec{v} are nonzero vectors and $\vec{u} \cdot \vec{v}=0$. Then \vec{u} and \vec{v} are linearly dependent.
() (j) It is possible for a 2×2 matrix with real-valued entries to have eigenvalues 3 and i.
(10) 2. State the definition of a subspace of vector space V.
(5) 3. Suppose the coordinates of \vec{x} relative to the basis $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -5\end{array}\right],\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right]\right\}$ is $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ -4 \\ 3\end{array}\right]$. Find \vec{x}.
(10) 4. Let $A=\left[\begin{array}{cc}1 & 5 \\ -1 & -3\end{array}\right]$. Find eigenvalues of A. Show that A is similar to matrix of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ by finding an appropriate invertible matrix P.
(10) 5. Find a basis for the subspace $H=\left\{\left[\begin{array}{c}3 a+b+c \\ -b+2 c \\ -a-c\end{array}\right]: a, b, c \in \Re\right\}$. Note: Basis vectors must be linearly independent!
(15) 6. Matrices $A=\left[\begin{array}{ccccc}2 & 4 & 1 & 6 & 1 \\ 3 & 6 & 2 & 7 & 0 \\ 2 & 4 & 0 & 10 & 4 \\ 3 & 6 & 2 & 7 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccccc}2 & 4 & 1 & 6 & 1 \\ 0 & 0 & 1 & -4 & -3 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ are row equivalent. Find bases for the column space, row space and null space of A and state the dimension of each one.
(10) 7. Given $A=\left[\begin{array}{ccc}3 & 2 & 3 \\ -6 & -1 & 5 \\ -6 & 2 & 1\end{array}\right]$. Find its LU factorization.
(10) 8. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & -3 & 2 \\ -1 & -2 & 1\end{array}\right]$
(10) 9. Given the vector space $V=\operatorname{Span}\left\{\left[\begin{array}{l}5 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right]\right\}$. Find an orthogonal basis for V.
(10) 10. Compare the values of determinants of the matrices $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $B=\left[\begin{array}{ccc}\frac{a^{\prime}}{3} & \frac{h}{3} & \frac{i}{3} \\ a & b & c\end{array}\right]$.

