Elementary Linear Algebra Sample Exam II- 4 pages Chapter 3, Sections 4.1-4.7, 5.1-5.3 & 5.5 Math 2270

NAME: _____

Time Limit: 50 Minutes Calculator Allowed: Scientific

The point value of each problem is in the left-hand margin. You must show your work to receive full credit for your answers, except on problem 1. The set of real numbers is denoted by \Re . Work neatly.

(6) 1. True or False.

- () (a) Suppose A is a 3×5 matrix. If dim Nul A = 2, then dim row A = 1.
- () (b) The area of the parallelogram with the sides vectors \vec{u} and \vec{v} is the absolute value of the determinant of the matrix $A = \begin{bmatrix} \vec{u} & \vec{v} \end{bmatrix}$.
- () (c) Let $\vec{x} \in \Re^2$ and $C = \begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$. Then $C\vec{x}$ rotates \vec{x} by degrees counterclockwise and then multiplies it by 2.
- (7) 2. State the definition of a subspace of a vector space V.

(12) 3. Find the bases for the row space, the column space, and the null space of $A =$	Γ1	-1	-1	1	ך 1	l
	-1	1	0	-2	2	I
	1	-1	-2	0	3	
	2	-2	-1	3	4	

Math 2270 - Sample Exam II

(10) 4. Find all eigenvalues of the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ 2 & 2 & 2 \\ -2 & 0 & 0 \end{bmatrix}$

(10) 5. The eigenvalues of the matrix $A = \begin{bmatrix} 11 & 16 \\ -8 & -13 \end{bmatrix}$ are $\lambda_1 = -5$ and $\lambda_1 = 3$. Diagonalize A.

Math 2270 - Sample Exam II

(15) 6. Suppose T is a one-to-one linear transformation from vector space V onto vector space W. Suppose $\mathcal{B} = {\vec{b}_1, \dots, \vec{b}_n}$ is a basis for V. Show that $\mathcal{D} = {T(\vec{b}_1), \dots, T(\vec{b}_n)}$ is a basis for W.

(5) 7. Suppose
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\-2\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\-3 \end{bmatrix}, \begin{bmatrix} -1\\2\\3 \end{bmatrix} \right\}$$
 is a basis for \Re^3 and let $\vec{x} = \begin{bmatrix} 1\\3\\4 \end{bmatrix}$. Find $[\vec{x}]_{\mathcal{B}}$.

(5) 8. Compare the values of determinants of the matrices $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ and $B = \begin{bmatrix} g & h & i \\ 2d - a & 2e - b & 2f - c \\ a & b & c \end{bmatrix}$.

Math 2270 - Sample Exam II

(10) 9. Find the determinant of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -4 & 5 & -9 \\ 3 & -4 & -1 & 6 \\ -1 & 3 & 5 & 7 \end{bmatrix}$ by first creating a matrix with the same determinant and containing several zeros.

(10) 10. Consider the subset $H = \{ax^2+bx+c : a, b, c \in \Re \text{ and } a \neq 0\}$ of the vector space $\mathbb{P}_2 = \{ax^2+bx+c : a, b, c \in \Re\}$. Either show H is a subspace of \mathbb{P}_2 or give an example to the contrary.

(10) 11. Prove that $\Re^2 = \operatorname{Span}\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-2 \end{bmatrix} \right\}$.