NAME:

Time Limit: 50 Minutes Calculator Allowed: Scientific

The point value of each problem is in the left-hand margin. You must show your work to receive full credit for your answers, except on problem 1 . The set of real numbers is denoted by \Re. Work neatly.
(6) 1. True or False.
() (a) Suppose A is a 3×5 matrix. If $\operatorname{dim} \operatorname{Nul} A=2$, then dim row $A=1$.
() (b) The area of the parallelogram with the sides vectors \vec{u} and \vec{v} is the absolute value of the determinant of the matrix $A=\left[\begin{array}{ll}\vec{u} & \vec{v}\end{array}\right]$.
(c) Let $\vec{x} \in \Re^{2}$ and $C=\left[\begin{array}{cc}1 & -\sqrt{3} \\ \sqrt{3} & 1\end{array}\right]$. Then $C \vec{x}$ rotates \vec{x} by degrees counterclockwise and then multiplies it by 2 .
(7) 2. State the definition of a subspace of a vector space V.
(12) 3. Find the bases for the row space, the column space, and the null space of $A=\left[\begin{array}{ccccc}1 & -1 & -1 & 1 & 1 \\ -1 & 1 & 0 & -2 & 2 \\ 1 & -1 & -2 & 0 & 3 \\ 2 & -2 & -1 & 3 & 4\end{array}\right]$.
(10) 4. Find all eigenvalues of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ 2 & 2 & 2 \\ -2 & 0 & 0\end{array}\right]$
(10) 5. The eigenvalues of the matrix $A=\left[\begin{array}{cc}11 & 16 \\ -8 & -13\end{array}\right]$ are $\lambda_{1}=-5$ and $\lambda_{1}=3$. Diagonalize A.
(15) 6. Suppose T is a one-to-one linear transformation from vector space V onto vector space W. Suppose $\mathcal{B}=\left\{\vec{b}_{1}, \cdots, \vec{b}_{n}\right\}$ is a basis for V. Show that $\mathcal{D}=\left\{T\left(\vec{b}_{1}\right), \cdots, T\left(\vec{b}_{n}\right)\right\}$ is a basis for W.
(5) 7. Suppose $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -3\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]\right\}$ is a basis for \Re^{3} and let $\vec{x}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$. Find $[\vec{x}]_{\mathcal{B}}$.
(5) 8. Compare the values of determinants of the matrices $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $B=\left[\begin{array}{ccc}g & h & i \\ 2 d-a & 2 e-b & 2 f-c \\ a & b & c\end{array}\right]$.
(10) 9. Find the determinant of the matrix $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -2 & -4 & 5 & -9 \\ 3 & -4 & -1 & 6 \\ -1 & 3 & 5 & 7\end{array}\right]$ by first creating a matrix with the same determinant and containing several zeros.
(10) 10. Consider the subset $H=\left\{a x^{2}+b x+c: a, b, c \in \Re\right.$ and $\left.a \neq 0\right\}$ of the vector space $\mathbb{P}_{2}=\left\{a x^{2}+b x+c\right.$: $a, b, c \in \Re\}$. Either show H is a subspace of \mathbb{P}_{2} or give an example to the contrary.
(10) 11. Prove that $\Re^{2}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -2\end{array}\right]\right\}$.

