NAME: \qquad

Time Limit: 50 Minutes Calculator Allowed: Scientific

The point value of each problem is in the left-hand margin. You must show your work to receive full credit for your answers, except on problem 1. Work neatly.
(10) 1. True or False.
() (a) If A is invertible, then the transformation $T(\vec{x})=A \vec{x}$ is both 1-1 and onto.
() (b) Suppose C is a singular matrix. If $A C=B C$, then $A=B$.
() (c) If the coefficient matrix A is a 3×5 matrix with three pivots, then the system $A \vec{x}=\vec{b}$ is consistent.
() (d) The zero vector is in the span of any collection of vectors.
() (e) If the equation $A \vec{x}=\vec{b}$ is inconsistent for some vector \vec{b}, then the only solution of $A \vec{x}=\overrightarrow{0}$ is the trivial solution.
(5) 2. State the definition of a linearly independent set of vectors.
(7) 3. Let $A=\left[\begin{array}{ccc}1 & 3 & -2 \\ 2 & 4 & -5 \\ -3 & -5 & 8\end{array}\right]$. Find the vector solution of the homogeneous equation $A \vec{x}=\overrightarrow{0}$. If one solution of $A \vec{x}=\vec{b}$ is $\vec{x}_{p}=\left[\begin{array}{c}3 \\ -2 \\ 7\end{array}\right]$, find the general solution of $A \vec{x}=\vec{b}$.
(8) 4. Find the inverse of the matrix $A=\left[\begin{array}{ccc}2 & 3 & -6 \\ -5 & -4 & 10 \\ 2 & 1 & -3\end{array}\right]$.
(8) 5. Is the vector $\vec{u}=\left[\begin{array}{c}2 \\ -5 \\ 4\end{array}\right]$ in the span of vectors $\vec{v}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right], \vec{w}=\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right]$ and $\vec{z}=\left[\begin{array}{l}1 \\ 0 \\ 5\end{array}\right]$. If yes, write \vec{u} as a linear combination of \vec{v}, \vec{w} and \vec{z}.
(10) 6. Consider the set of vectors $R=\{\vec{u}, \vec{v}, \vec{w}\}$ and $S=\{\vec{u}, \vec{v}, \vec{w}, \vec{z}\}$ with each vector in \Re^{5}. Show that if R is linearly dependent, then so is S. Prove that if S is linearly independent, then R is also linearly independent.
(10) 7. Suppose the linear transformation $T: \Re^{2} \rightarrow \Re^{2}$ first rotates a point 30° counterclockwise about the origin and then reflects it about the horizontal axis. Find the standard matrix of T.
(10) 8. For what h value(s) the system whose augmented matrix is $\left[\begin{array}{ccc}2 & \frac{h}{3}-1 & -8 \\ -3 & h^{2} & 12\end{array}\right]$ has a unique solution? Explain!
(10) 9. Find the LU factorization of the matrix $A=\left[\begin{array}{cccc}2 & 1 & -3 & 5 \\ -6 & 4 & 8 & -12 \\ 4 & -12 & -4 & 7\end{array}\right]$.
(10) 10. Consider the transformation $T: \Re^{2} \rightarrow \Re^{3}$ defined by $T(x, y)=(x-2 y, 3 x+y,-5 x+4 y)$. Is T a one-to-one? Is T onto \Re^{3} ? Explain!
(10) 11. Given matrices $A=\left[\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right], B=\left[\begin{array}{ccc}3 & 0 & -1 \\ -2 & 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{cc}0 & -2 \\ 1 & -1 \\ 2 & 0\end{array}\right]$. Find $A B+C^{T}$.

