Calculus II

Fun Problems

A solution must be your own original work. You may discuss your solutions with your instructor.

1. Prove that $4 \tan ^{-1}\left(\frac{1}{5}\right)-\tan ^{-1}\left(\frac{1}{239}\right)=\frac{\pi}{4}$.
2. Notice that $(\sqrt{2})^{2}=2$ and $(\sqrt{2})^{4}=4$. Prove analytically that $(\sqrt{2})^{x} \neq x$ for any other real x value.
3. Which one is larger e^{π} or π^{e} ? You must prove your answer analytically!
4. Suppose f is a 1-1 continuous function with $f(0)=0, f(1)=1$ and $\int_{0}^{1} f(x) d x=\frac{1}{3}$. Find the value of the integral $\int_{0}^{1} f^{-1}(x) d x$.
5. Suppose $f^{\prime \prime}$ is a continuous function on $[0,1]$ and $f(1)=f^{\prime}(1)=0$. Show that $\int_{0}^{1} x^{2} f^{\prime \prime}(x) d x=2 \int_{0}^{1} f(x) d x$.
6. Prove that $\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+(\tan x)^{a}}=\frac{\pi}{4}$ for any real number a different from zero.
7. Suppose f is an even continuous function. Show that if $\lim _{t \rightarrow \infty} \int_{-t}^{t} f(x) d x=L$, then $\int_{-\infty}^{\infty} f(x) d x=L$.
8. Suppose $l: \Re^{+} \rightarrow \Re$ is a function with $l(0)=0, l^{\prime}(x)$ continuous and $l^{\prime}(x) \geq 1$ for all $x \geq 0$. Prove that l is an arclength function. That is, $l(x)$ is the arclength of a curve $y=f(t)$ from $t=0$ to $t=x$.
9. If the wheel whose boundary is the circle $x=\cos t, y=1+\sin t, 0 \leq t \leq 2 \pi$, is rolled along the x-axis, its top touches the line $y=2$ continuously. Find a wheel whose boundary is not a circle which will do the same. Prove your answer!
10. A ball is released from a height of 10 feet and bounces. Each bounce is $\frac{3}{4}$ of the height of the bounce before. This ball will bounce infinitely many times. Show that this ball will stop bouncing in a finite amount of time, or after about 11 seconds.
11. Show that it is possible to stack identical wooden building blocks in a staircase fashion so that the top block completely extends beyond the endpoint of the bottom block.
