
Mathematics Computer Laboratory - Math 1200 - Version 14

Lab 5 - Mathematical Modeling©

Due

You should only turn in exercises in this lab with its title and your name in Title and Subtitle font,
respectively. Edit your document and use appropriate margins to get a polished and neat document.

1. The objective of this lab is to discuss syntax for data transformation, data fitting, and development of
appropriate exponential and power models.

Data collection is an integral part of most scientific studies. Data analysis can lead to discovery of well-defined
relationships between different variables. Then a mathematical model can be developed based on such rela-
tionships. Model interpretation and forecasting, in real-world terms, usually leads to a deeper understanding
and more precise future studies. This cycle will continue until a sufficiently accurate mathematical model is
developed. This method has led humans to discovery of almost all basic scientific laws that we know today.

2. Starting with a set of data points, let’s use Mathematica to find its “best” fit among different classes of
functions.

(a) xdata={0.5, 1, 1.4, 2, 2.5, 3, 3.6, 4, 4.8} These are the x or domain values.
Note: It is convenient to use a descriptive list name.

(b) ydata={0.2, 1, 3.5, 8, 15.5, 28, 43.1, 64, 112.5} These are the corresponding y or range val-
ues.
Note: You might get a warning message about the similarity of names used for the two lists.

(c) xydata=Transpose[{xdata, ydata}] Now we have matched the corresponding data values.

(d) dataplot=ListPlot[xydata] This gives the graph of the data points.

(e) The command Fit will yield the function which “best” fits the data among all functions of a given type.

f1=Fit[xydata, {1,x}, x] You should get −29.612+ 23.7854 x .

The list {1,x} specifies that the function type is linear: f(x) = c1 · 1+ c2 · x . The last x indicates that
x is the independent variable.

(f) f1graph=Plot[f1, {x, 0, 5}] This gives the graph of the fit function on the domain [0, 5] .

(g) To see how well this function fits the data, view the graph of both on the same coordinate system. The
Show command displays graphs on the same coordinate system.

Show[dataplot, f1graph]

The “best” linear function does not seem to fit the data well!
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2. Continued.

(h) Let’s find the “best” fit quadratic function.

f2=Fit[xydata, {1, x, x^2}, x] You should get 11.235− 19.3367 x+ 8.26701 x2 .

This is the function which “best” fits the data among all functions of the form f(x) = c1 · 1+c2 · x+c3 · x2 .

(i) f2graph=Plot[f2, {x, 0, 5}]

(j) Show[dataplot, f1graph, f2graph] The graph of data points and both fit functions are displayed
on the same coordinate system. It is clear that the quadratic function is a better fit.

The general form of the Fit command is

Fit[List of data points, List of functions, List of independent variables]

This command gives the best “least square fit” of the desired function form.

(k) Let’s try a function of the form f(x) = c1 · 1 + c2 · x+ c3 · ex

f3=Fit[xydata, {1, x, E^x}, x] You should get −7.42772+ 0.744476 Ex + 6.51318 x .

(l) f3graph=Plot[f3, {x, 0, 5}]

(m) Show[dataplot, f2graph, f3graph] From this comparison, one may conclude that the function f3

is as good a fit as f2.

Although it might be possible to list an arbitrary collection of functions and get an accurate fit, such a modeling
method has two major draw backs.

(a) The mathematical model may not reveal the true nature of the relationship between different variables
and therefore provide no new insights.

(b) The mathematical model may give an inaccurate forecast.

The data in the last part was generated using a cubic relationship between x and y variables including small
variations to account for data collection inaccuracies. None of the fit functions showed this behavior and all
would be very poor predictor of value of y outside the x interval [0.1, 4.8] . Therefore, it is important to choose
functions which represent the relationship between variables and also find the smallest number of functions for
which there is an accurate fit.

We will now develop an indicator for recognizing exponential, y = a ekx , and power, y = a xb , relationships in
data; in either case, taking the logarithm of both sides reveals a linear relationship in transformed data.

y = a ekx ⇐⇒
ln y = ln(a ekx) ⇐⇒
ln y = ln a+ ln ekx = ln a+ kx ⇐⇒
Y = kx+A where Y = ln y and A = ln a

y = a xb ⇐⇒
ln y = ln(a xb) ⇐⇒
ln y = ln a+ lnxb = ln a+ b lnx ⇐⇒
Y = bX +A where Y = ln y , X = lnx and A = ln a
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Notice that each of the above steps are reversible. Therefore, an exponential model y = a ekx is correct if and
only if the plot of ln y versus x is a straight line. While a power model y = a xb is correct if and only if the plot
of ln y versus lnx is a straight line. Hence the “straightness” of the plot of certain transformations of data is
an indicator of the category of model that is most like the actual data.

3. Now let’s find the model which best fit our xydata. Form the transformed data sets (ln y, x) and
(ln y, lnx) . Then check for their “straightness”.

(a) lnydata=N[Log[ydata]]

Log function applied to a list gives the Log or natural logarithm of each point of that list. As usual, the
command N gives the decimal approximation. You could not do this if zero or negative numbers were in
the ydata.

(b) xlnydata=Transpose[{xdata, lnydata}] This gives data points of the form (x, ln y) .

(c) logplot=ListPlot[xlnydata, Joined->True]

It is customary to call this type of plot a Log Plot. Joining the transformed data points with straight
lines is a visual help in determining straightness.

(d) lnxdata=N[Log[xdata]] This gives the natural logarithm of x values.

(e) lnxlnydata=Transpose[{lnxdata, lnydata}] This gives data points of the form (lnx, ln y) .

(f) loglogplot=ListPlot[lnxlnydata, Joined->True] This type of plot is called a Log-Log Plot.

(g) To compare the “straightness” of these two models, let’s display the two graphs of transformed data on
the same coordinate system.

Show[logplot, loglogplot] Notice that the loglogplot looks straighter.

(h) Now find the straight line which best fit the lnxlnydata.

Fit[lnxlnydata, {1,u}, u] You should get 0.208145+ 2.81877 u .

Therefore ln y = 0.208145 + 2.81877 lnx . Exponentiating both sides yields:

ln y = 0.208145 + 2.81877 lnx

eln y = e0.208145+2.81877 lnx

y = e0.208145 e2.81877 lnx = e0.208145
(
elnx

)2.81877
y = e0.208145 x2.81877

Using Mathematica:

E^(0.208145) x^(2.81877) Thus, approximately, y = 1.23x2.82 .

y=1.23 x^(2.82)

(i) modelplot=Plot[y, {x, 0, 5}]

(j) Show[dataplot, modelplot] This graph indicates that y = 1.23x2.82 is a very good fit.
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3. Continued.

(k) Clear[xdata, ydata, xydata, dataplot, f1, f1graph, f2, f2graph, f3, f3graph];

Clear[lnydata, xlnydata, logplot, lnxdata, lnxlnydata, loglogplot, y, modelplot]

4. We will now discuss another modeling example.

(a) xdata={1.1, 2, 3.1, 4.1, 4.9, 6}

(b) ydata={0.34, 0.46, 0.61, 0.83, 1.12, 1.51}

(c) xydata=Transpose[{xdata, ydata}]

(d) dataplot=ListPlot[xydata]

(e) lnydata=Log[ydata]

(f) xlnydata=Transpose[{xdata, lnydata}]

(g) logplot=ListPlot[xlnydata, Joined->True] The transformed data (x, ln y) seem pretty straight.

(h) lnxdata=N[Log[xdata]]

(i) lnxlnydata=Transpose[{lnxdata, lnydata}]

(j) loglogplot=ListPlot[lnxlnydata, Joined->True] The transformed data (lnx, ln y) does not seem
as straight.

(k) Show[logplot, loglogplot] The logplot looks more straight.

(l) Fit[xlnydata, {1,u}, u] You should get −1.4111+ 0.30453 u .

Therefore ln y = −1.4111 + 0.30453x . Exponentiating both sides yields:

ln y = −1.4111 + 0.30453x

eln y = e−1.4111+0.30453x

y = e−1.4111 e0.30453x

Using Mathematica:

E^(-1.4111) E^(0.30453 x) Thus, approximately, y = 0.24 e0.3x .

y=0.24 E^(0.3 x)

(m) modelplot=Plot[y, {x, 0.5,6.5}]

(n) Show[dataplot, modelplot] This graph indicates that y = 0.24 e0.3x is a very good fit.

(o) Clear[xdata, ydata, xydata, dataplot, lnydata, xlnydata, logplot]

Clear[lnxdata, lnxlnydata, loglogplot, y, modelplot]
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In each of the following exercises, determine whether the exponential model or the power model better fits the
data using the straightness indicator. Then develop the chosen model. Follow the steps in parts 3 and 4. Add
appropriate comments (type your comments in text cells) to explain your work.

A. Let d be the average distance, in millions of miles, of planets in our solar system from the Sun and let T
years be the corresponding period (time for one complete revolution around the Sun) of each planet.

Planet d T

Mercury 35.96 0.24084
Venus 67.20 0.6152
Earth 92.90 1.0000
Mars 141.6 1.8808
Jupiter 483.3 11.8620
Saturn 886.2 29.4580
Uranus 1783 84
Neptune 2793 164.8

B. Let L represent the length of a simple pendulum in centimeters and let period T be the corresponding
time, in seconds, in which the pendulum completes one swing back and forth.

Note: Assuming a pendulum is not allowed to swing too far from the vertical, its period T is independent
of the angle it swings through.

L 5 10 15 20 25 30 35

T 0.45 0.63 0.78 0.89 1.00 1.10 1.19

C. Let P represent the U.S. population size, in millions, at census years 1790 to 1890.

Year 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

P 3.929 5.308 7.240 9.638 12.866 17.069 23.192 31.443 38.558 50.156 62.948

Note: You may want to start with setting year 1780 as time zero. Then the dates will transform to times 10
to 110. In Mathematica you can do this by time=year−1780 where year is the list of the years: year={1790,
1800 , ... } .


