College Algebra - Math 1050

Sample Exam II - 4 pages
Sections 3.3-5.4
Time Limit: 50 Minutes

NAME: \qquad
The point value of each problem is in the left-hand margin. You must show your work to receive any credit for your answers, except on problems $1 \& 2$. Work neatly.
(6) 1. True or False.
() (a) If the remainder of the division of the polynomial $f(x)$ by $x-2$ is 3 , then $f(2)=3$
() (b) Every 3×3 linear system of equations has exactly one solution.
() (d) The inverse of the function $f(x)=\log _{3} x$ is $g(x)=x^{3}$.
(6) 2. Fill in the blanks.
(a) The vertical asymptote(s) of the graph of the rational function $f(x)=\frac{x}{x(x-2)}$ is (are)
(b) The exact value of $\log _{4} 8$ is
(c) If $2-3 i$ is a zero of the polynomial $P(x)$, with real coefficients, then is another zero of it.
(10) 3. Draw the graph of $f(x)=1+\log _{2}(x-1)$ by plotting points or first plotting an appropraite function and using transformations. In either case, you must find at least 4 points on this graph.
(10) 4. Given $\log _{b} 2=0.61, \log _{b} 3=0.96$ and $\log _{b} 5=1.41$. Find the exact value of $\log _{b} \frac{45}{8}$. Note: Do not attempt to find b.
(12) 5. Solve $\log _{2} x+\log _{2}(x-1)=1$.
(12) 6. Use the Intermediate Value Theorem to show that the function $f(x)=x^{3}+x+4$ has a zero between -1.5 and -1 and approximate this zero to the nearest tenth.
(12) 7. The amount $Q(t)$ of a radioactive substance (in grams) remaining t years from now will be $Q(t)=(42) 2^{-0.017 t}$. After how many years will the amount remaining be 0.42 grams?
(12) 8. Solve the following 3×3 linear system of equations $\left\{\begin{array}{l}10 x+5 y-7 z=1 \\ -5 x+y+4 z=3 \\ 3 x+2 y-2 z=-2\end{array}\right.$
(10) 9. Solve the 2×2 nonlinear system $\left\{\begin{array}{l}2 x^{2}-y^{2}=2 \\ -3 x+y=-5\end{array}\right.$
(14) 10. Find all zeros of the polynomial $f(x)=2 x^{4}-5 x^{3}-x^{2}-5 x-3$.

